Study on the Interaction Between Cellulase and Surfactants
-
Jian Zhang
and Yue Yu
Abstract
The conformations of secondary and tertiary structures of cellulase in the presence of eleven commonly used surfactants were determined by Raman spectroscopy and the results were discussed. The results indicated that anionic surfactants had a stronger influence on the cellulase conformations than nonionic surfactants. Thus anionic surfactants showed a stronger inactivation on the cellulase activity. Furthermore, Zeta potential distributions of cellulase in solutions of surfactants were tested by Dynamic Light Scattering (DLS). The DLS results indicated that the interaction between anionic surfactants and cellulase was attributed to electrostatic attraction. By adding cellulase to a liquid, non-cellulase-containing detergent, the detergency of the liquid detergent could be increased. Further studies on the sample swatches by optical microscopy and scanning electron microscopy (SEM) were undertaken in this paper.
Kurzfassung
Die Konformationen der sekundären und der tertiären Strukturen von Cellulase in Gegenwart von elf häufig verwendeten Tensiden wurden mit Hilfe der Ramanspektroskopie bestimmt und die Ergebnisse diskutiert. Die Ergebnisse zeigten, dass anionische Tenside einen stärkeren Einfluss auf die Cellulase-Konformationen hatten als nichtionische Tenside. Anionische Tenside inaktivierten Cellulase stärker. Darüber hinaus wurden Zetapotentialverteilungen von Cellulase in Tensid-Lösungen mittels dynamischer Lichtstreuung (DLS) bestimmt. Die DLS-Ergebnisse zeigten, dass die Wechselwirkung zwischen anionischen Tensiden und Cellulase von der elektrostatischen Anziehung bestimmt wurde. Durch Hinzugeben von Cellulase in ein flüssiges, nicht cellulasehaltiges Waschmittel konnte die Waschleistung des Waschmittels erhöht werden. Weitere Untersuchungen der Testgewebe mittels optischer Mikroskopie und Rasterelektronenmikroskopie (SEM) wurden in dieser Arbeit durchgeführt.
References
1. Sharif, B. A. and Mohammed, M. I.: Cellulase biocatalysis: key influencing factors and mode of action, Cellulose.6 (2015) 2157–2182. 10.1007/s10570-015-0672-5Search in Google Scholar
2. Park, J. and Park, K.: Improvement of the physical properties of reprocessed paper by using biological treatment with modified cellulase, Bioresour Technol.79 (2001) 91–94. 10.5423/PPJ.2009.25.1.091Search in Google Scholar
3. Ramesh, C. K. and Richa, S.: A Rapid and Easy Method for the Detection of Microbial Cellulases on Agar Plates Using Gram's Iodine, Rapid Method for Screening Cellulases.57 (2008) 503–507. 10.1007/s00284-008-9276-8Search in Google Scholar
4. Bhat, M. K.: Cellulases and related enzymes in biotechnol-ogy, Biotechnol Adv.18 (2000) 355–383. 10.1016/S0734-9750(00)00041-0Search in Google Scholar
5. Gusakov, A. V., Berlin, A. G., Popova, N. and Sinitsyn, A.: A comparative study of different cellulasepreparations in the enzymatic treatment of cotton fabrics, Appl Biochem Biotechnol.88 (2000) 119–126. 10.1385/ABAB:88:1-3:119Search in Google Scholar
6. Ida, L., Barare, R. E. and Jonathan, W.: The mechanism of cellulase action on cotton fibers: evidence from atomic force microscopy, ELSEVIER82 (2000) 213–221. 10.1016/S0304-3991(99)00158-8Search in Google Scholar
7. Jim, L: Protease Stabilization by Highly Concentrated Anionic Surfactant Mixtures, JAOCS.72 (1995) 53–59. 10.1007/BF02635779Search in Google Scholar
8. Kravetz, L. and Guin, K. F.: Effect of surfactant structure on stability of enzymes formulated into laundry liquids, J Am Oil Chem Soc.62 (1985) 943–949. 10.1007/BF02541765Search in Google Scholar
9. Zhang, Y. H., Hong, J. and Ye, X. H.: Cellulase assays, Biofuels: methods and protocols.5 (2009) 213–231. PMid:19768625; 10.1007/978-1-60761-214-8_14Search in Google Scholar
10. Yu, Y., Zhang, J. and He, De.: Studies on conditions for determination of cellulase activity and its adoption for determination in cellulase formulated detergent products, China Surfactant Detergent & Cosmetics.45 (2015) 457–461. 10.13218/j.cnki.csdc.2015.08.009Search in Google Scholar
11. Daniel, N. and Josef, S.: Raman Spectroscopy of Proteins and Nucleoproteins, Current Protocols in Protein Science. 2 (2013) 17.8.1–17.8.52. 10.1002/0471140864Search in Google Scholar
12. Shi, Q.: Inhibitory influence of surfactants on cellulase's catalytic reaction, TEXTILE AUXILIARIES.13 (1996) 35–37.Search in Google Scholar
13. Geng, B., Guo, M. J. and Zhang, S. L.: Raman spectral analysis of cellobiase at various pH, Journal of East China University of Science and Technology. 3 (2008) 342–344. 10.14135/j.cnki.1006-3080.2008.03.005Search in Google Scholar
14. Li, M. and Xu, X. W.: Effects of surfactants and dyes on cellulase activity, Journal of Textile Research.7 (1996) 3–27. 10.3969/j.issn.2095-0101.2009.04.009Search in Google Scholar
15. Huang, Z. X., Zhang, H. L. and Yao, W. H.: Raman spectroscopy study of zinc finger ZNF191(243–368), Chinese Science Bulletin.48 (2003) 1722–1727. 10.1360/02wb0130Search in Google Scholar
16. Ganesh, K. and Venkatesan, R.: Effects of nonionic surfactant on hydrolysis and fermentation of protein rich tannery solid waste, Biodegradation.19 (2008) 739–748. PMid:18288576; 10.1007/s10532-008-9178-2Search in Google Scholar
17. Yang, Q. L. and Yang, X. Q.: Effects of some surfactants on activity of liquid protease, China Surfactant Detergent &Cosmetics.34 (2005) 296–298. 10.3969/j.issn.1671-3206.2005.05.013Search in Google Scholar
18. Yuan, J. G., Wang, P. and Wang, G, Q.: Effect of surfactant on cellulase bio-washing, Journal of Textile Research.35 (2014) 78–82. 10.13475j.fzxb.201405007805Search in Google Scholar
19. Zhang, J. and Zhang, J.: Study on the interaction of alkaline protease with main surfactants in detergent, Colloid and Polymer Science.294 (2016) 247–255. 10.1007/s00396-015-3777-3Search in Google Scholar
20. Aubrey, K. L. and Thomas, G. J.: Raman spectroscopy of filamentous bacteriophage Ff (fd, M13, f1) incorporating specifically deuterated alanine and tryptophan side chains. Assignments and structural interpretation, Biophys. J.60 (1991) 1337–1349. 10.1016/S0006-3495(91)82171-3Search in Google Scholar
21. Wu, J. L. and Li, H. Z.: Effect of alkyl chain length and EO chain on AES, China Surfactant Detergent & Cosmetics.5 (1990) 1–9. 10.13222/j.cnki.dc.1990.05.001Search in Google Scholar
© 2017, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Detergent/Enzymes
- Lactobacillus brevis Lipase: Purification, Immobilization onto Magnetic Florosil NPs, Characterization and Application as a Detergent Additive
- Study on the Interaction Between Cellulase and Surfactants
- Physical Chemistry
- Study of Ionic Liquid Microemulsions: Ethylammonium Nitrate/TritonX-100/Cyclohexane
- Synergistic Effect of Cationic Surfactants on the Rheological Behavior of Erucyl Amidosulfobetaine
- Microscopic Evidence for the Correlation of Micellar Structures and Counterion Binding Constant for Flexible Nanoparticle Catalyzed Piperidinolysis of PS− in Colloidal System
- Application
- Effect of Surface Modification on the Dispersion, Thermal Stability and Crystallization Properties of PET/CaCO3 Nanocomposites
- Environmental Chemistry
- Inhibition of Calcium Carbonate Scale Using an Environmental Friendly Scale Inhibitor
- Novel Surfactants
- Study on the Properties of Mixed Micelles of Disodium Salt of 3-({2-[(2-Carboxy-ethyl)-dodecanoyl-amino]-ethyl}-dodecanoyl-amino)-propionic Acid in Solution Systems
- Synthesis
- Macrocyclic Schiff Base Metal Complexes Derived from Isatin: Structural Activity Relationship and DFT Calculations
- Quaternary Ammonium Gemini Surfactants Used in Enhanced Oil Recovery: Synthesis, Properties, and Flooding Experiments
Articles in the same Issue
- Contents/Inhalt
- Contents
- Detergent/Enzymes
- Lactobacillus brevis Lipase: Purification, Immobilization onto Magnetic Florosil NPs, Characterization and Application as a Detergent Additive
- Study on the Interaction Between Cellulase and Surfactants
- Physical Chemistry
- Study of Ionic Liquid Microemulsions: Ethylammonium Nitrate/TritonX-100/Cyclohexane
- Synergistic Effect of Cationic Surfactants on the Rheological Behavior of Erucyl Amidosulfobetaine
- Microscopic Evidence for the Correlation of Micellar Structures and Counterion Binding Constant for Flexible Nanoparticle Catalyzed Piperidinolysis of PS− in Colloidal System
- Application
- Effect of Surface Modification on the Dispersion, Thermal Stability and Crystallization Properties of PET/CaCO3 Nanocomposites
- Environmental Chemistry
- Inhibition of Calcium Carbonate Scale Using an Environmental Friendly Scale Inhibitor
- Novel Surfactants
- Study on the Properties of Mixed Micelles of Disodium Salt of 3-({2-[(2-Carboxy-ethyl)-dodecanoyl-amino]-ethyl}-dodecanoyl-amino)-propionic Acid in Solution Systems
- Synthesis
- Macrocyclic Schiff Base Metal Complexes Derived from Isatin: Structural Activity Relationship and DFT Calculations
- Quaternary Ammonium Gemini Surfactants Used in Enhanced Oil Recovery: Synthesis, Properties, and Flooding Experiments