SAXS Study on Azithromycin Loaded Nonionic Microemulsions
-
M. Fanun
Abstract
Structure of water/propylene glycol/ethoxylated mono-di-glyceride/peppermint oil/ethanol microemulsions solubilizing azithromycin has been investigated at room temperature by small-angle X-ray scattering (SAXS) technique. The scattering data were evaluated by Indirect Fourier Transformation (IFT) or Generalized Indirect Fourier Transformation (GIFT) methods depending on the aqueous phase content. The growth of the microemulsions droplets by increasing the water content and the effect of azithromycin incorporation in the microemulsions were investigated. The Indirect Fourier Transformation gives the real space pair-distance distribution function: a facile way for the quantitative estimation of structure parameters of the microemulsions. It was found that the size of the microemulsion aggregates or repeating distances in the microemulsion increases with the aqueous phase content. The maximum diameter of the drug free and drug loaded microemulsions aggregates depend on their microstructure. The values of the effective interaction radius of the microemulsions are higher for the drug free compared to the drug loaded microemulsions aggregates.
Kurzfassung
Die Struktur von Mikroemulsionen aus Wasser, Propylenglykol, ethoxilierten Mono-di-glyceriden, Pfefferminzöl und Ethanol, die Azithromycin lösen, wurde bei Raumtemperatur mit Hilfe der Röntgenkleinwinkelstreuung (SAXS) untersucht. Die Streudaten wurden mittels indirekter Fouriertransformation (IFT) oder generalisierter indirekter Fouriertransformation (GIFT) in Abhängigkeit von dem Wassergehalt ausgewertet. Das Wachstum der Mikroemulsionstropfen bei steigendem Wassergehalt und der Einfluss von Azithromycin-Zugaben in die Mikroemulsion wurden untersucht. Da die indirekte Fourier Transformation die Abstands-Verteilungsfunktion im Realraum liefert, lassen sich so leicht quantitative Aussagen über die Strukturparameter der Mikroemulsion gewinnen. Es wurde beobachtet, dass sich die Abmessungen der Mikroemulsionsaggregate oder die Wiederholabstände in der Mikroemulsion mit dem Wassergehalt zunehmen. Der maximale Durchmesser der freien und der mit Wirkstoff beladenen Mikroemulsionsaggregate hängt von ihrer Mikrostruktur ab. Der effektive Wechselwirkungsradius der Mikroemulsionen ist für die wirkstofffreien Aggregate größer als für die mit Wirkstoff beladenen Aggregate.
References
1. Fanun, M. (Ed.): Colloids in Drug Delivery, Taylor and Francis/CRC Press, Boca Raton, USA, 2010. 10.1201/CRCSURFACSCISuche in Google Scholar
2. Lawrence, M. J. and Rees, G. D.: Advanced Drug Delivery Reviews45 (2000) 89. 10.1016/S0169-409X(00)00103-4Suche in Google Scholar
3. Fanun, M. (Ed.): Microemulsions: Properties and Application, Taylor and Francis/CRC Press, Boca Raton, USA, 2009.Suche in Google Scholar
4. Evans, D. F. and Wennerström, H.: The Colloidal domain: where physics, chemistry, biology and technology meet. John Wiley & Sons, Inc; 1999.Suche in Google Scholar
5. Stubenrauch, C. (Ed.): Microemulsion: Background, New Concepts, Applications, Perspective. John Wiley & Sons Ltd; 2009. 10.1002/9781444305524Suche in Google Scholar
6. Holmberg, K.: Handbook of Applied Surface and Colloid Chemistry Volume 1. John Wiley & Sons Ltd; 2002.Suche in Google Scholar
7. Holmberg, K., Jönsson, B., Kronberg, B. and Lindman, B.: Surfactants and Polymers in Aqueous Solution. John Wiley & Sons Ltd; 2003.10.1002/0470856424Suche in Google Scholar
8. Kreilgaard, M.: Adv. Drug. Deliver. Rev.54 (2002) S77. 10.1016/S0169-409X(02)00116-3Suche in Google Scholar
9. Heuschkel, S., Goebel, A. and Neubert, R. H. H.: J. Pharm. Sci.97 (2008) 603. 10.1002/jps.20995Suche in Google Scholar PubMed
10. Heuschkel, S. and Neubert, R. H. H.: Chem-Ing-Tech.77 (2005) 239. 10.1002/cite.200407049Suche in Google Scholar
11. Patravale, V. B. and Date, A. A.: Microemulsions: Pharmaceutical Applications. In: Stubenrauch, C., (editor), Microemulsion: Background, New Concepts, Applications, Perspective; John Wiley & Sons Ltd: 2009, 259–300. 10.1002/9781444305524Suche in Google Scholar
12. Djekic, L., Ibric, S. and Primorac, M.: Int. J. Pharm.361 (2008) 41. 10.1016/j.ijpharm.2008.05.002Suche in Google Scholar PubMed
13. Djekic, L. and Primorac, M.: Int. J. Pharm.352 (2008) 231. 10.1016/j.ijpharm.2007.10.041Suche in Google Scholar PubMed
14. Balogh, J. and Pedersen, J. S.: Investigating the Effect of Adding Drug (lidocaine) to a Drug delivery system using Small-Angle X-ray scattering. In: Horvolgyi, Z. D. E. K., editors. Colloids for Nano- and Biotechnology. Siofok Hungary: Springer-Verlag2008, p. 101–106.10.1007/2882_2008_113Suche in Google Scholar
15. Glatter, O., Strey, R., Schubert, K.-V. and Kaler, E. W.: Ber. Bunsenges. Phys. Chem.100 (1996) 323. 10.1002/bbpc.19961000319Suche in Google Scholar
16. Brunner-Popela, J., Mittelbach, R., Strey, R., Schubert, K.-V., Kaler, E. W. and Glatter, O.: J. Chem. Phys.21 (1999) 10623. 10.1063/1.478993Suche in Google Scholar
17. Glatter, O., Fritz, G., Lindner, H., Brunner-Popela, J., Mittelbach, R., Strey, R. and Egelhaaf, S. U.: Langmuir16 (2000) 8692. 10.1021/la000315sSuche in Google Scholar
18. Glatter, O., Orthaber, D., Stradner, A., Scherf, G., Fanun, M., Garti, N., Clément, V. and Leser, M. E.: J. Colloid Interface Sci.241 (2001) 215. 10.1006/jcis.2001.7670Suche in Google Scholar PubMed
19. Yaghmur, A., de Campo, L., Aserin, A., GartiN. and Glatter, O.: Phys. Chem. Chem. Phys.6 (2004) 1524. 10.1039/b314625cSuche in Google Scholar
20. de Campo, L., Yaghmur, A., Sagalowicz, L., Watzke, H. and Glatter, O.: Langmuir20 (2004) 5254. 10.1021/la0499416Suche in Google Scholar PubMed
21. Sato, T., Hossain, Md. K., Acharya, D. P., Glatter, O., Chiba, A. and Kunieda, H.: J. Phys. Chem. B108 (2004) 12927. 10.1021/jp048469uSuche in Google Scholar
22. Yaghmur, A., de Campo, L., Sagalowicz, L., Leser, M. E. and Glatter, O.: Langmuir, 21 (2005) 569. 10.1021/la0482711Suche in Google Scholar PubMed
23. Yaghmur, A., de Campo, L., Salentinig, S., Sagalowicz, L., Leser, M. E. and Glatter, O.: Langmuir22 (2006) 517. 10.1021/la052109wSuche in Google Scholar PubMed
24. Graveland-Bikker, J. F., Fritz, G., Glatter, O. and de Kruif, C. G.: J. Appl. Cryst.39 (2006) 180. 10.1107/S0021889805043244Suche in Google Scholar
25. Yaghmur, A., de Campo, L., Sagalowicz, L., Leser, M. E. and Glatter, O.: Langmuir22 (2006) 9919. 10.1021/la061303vSuche in Google Scholar PubMed
26. Hellweg, T.: Scattering Techniques to Study the Microstructure of Microemulsions. In Stubenrauch, C., (editor), Microemulsion: Background, New Concepts, Applications, Perspective; John Wiley & Sons Ltd: 2009, 48–83. 10.1002/9781444305524Suche in Google Scholar
27. Gradzielski, M.: Curr. Opin. Colloid. Interface Sci.13 (2008) 263. 10.1016/j.cocis.2007.10.006Suche in Google Scholar
28. Nayeri, M., Zackrisson, M. and Bergenholtz, J.: J. Phys. Chem. B113 (2009) 8296. 10.1021/jp811482wSuche in Google Scholar PubMed
29. Teubner, M. and Strey, R.: J. Chem. Phys.87 (1987) 3195. 10.1063/1.453006Suche in Google Scholar
30. Glatter, O.: J. Appl. Cryst.10 (1977) 415. 10.1107/S0021889877013879Suche in Google Scholar
31. Brunner-Popela, J. and Glatter, O.: J. Applied Cryst.30 (1997) 431. 10.1107/S0021889896015749Suche in Google Scholar
32. Weyerich, B., Brunner-Popela, J. and Glatter, O.: J. Appl. Cryst.32 (1999) 197. 10.1107/S0021889898011790Suche in Google Scholar
33. Glatter, O., Fritz, G., Lindner, H., Brunner-Popela, J., Mittelbach, R., Strey, R. and Egelhaaf, S. U.: Langmuir16 (2000) 8692. 10.1021/la000315sSuche in Google Scholar
34. Brunner-Popela, J., Mittelbach, R., Strey, R., Schubert, K.-V., Kaler, E. W. and Glatter, O.: J. Chem. Phys.110 (1999) 10623. 10.1063/1.478993Suche in Google Scholar
35. Frühwirth, Th., Fritz, G., Freiberger, N. and Glatter, O.: J. Appl. Cryst.37 (2004) 703. 10.1107/S0021889804012956Suche in Google Scholar
36. Bergmann, A., Fritz, G. and Glatter, O.: J. Appl. Cryst.33 (2000) 1212. 10.1107/S0021889800008372Suche in Google Scholar
37. Fritz, G., Bergmann, A. and Glatter, O.: J. Chem. Phys.113 (2000) 9733. 10.1063/1.1321770Suche in Google Scholar
38. Maranzano, B. J., Wagner, N. J., Fritz, G. and Glatter, O.: Langmuir16 (2000) 10556. 10.1021/la0007426Suche in Google Scholar
39. Strey, R., Glatter, O., Schubert, K.-V. and Kaler, E. W.: J. Chem. Phys.105 (1996) 1175–1188. 10.1063/1.471960Suche in Google Scholar
40. Baciu, M., Holmes, M. C. and Leaver, M. S.: J. Phys. Chem. B111 (2007) 909. 10.1021/jp066595nSuche in Google Scholar PubMed
41. Orthaber, D., Bergmann, A. and Glatter, O.: J. Appl. Cryst.33 (2000) 218. 10.1107/S0021889899015216Suche in Google Scholar
42. Leaver, M. S., Olsson, U., Wennerström, H. and Strey, R.: J. Phys. Ii4 (1994) 515. 10.1051/jp2:1994142Suche in Google Scholar
43. Leaver, M., Furo, I. and Olsson, U.: Langmuir11 (1995) 1524. 10.1021/la00005a020Suche in Google Scholar
44. Balogh, J., Olsson, U. and Pedersen, J. S.: J. Disper. Sci. Technol.27 (2006) 497. 10.1080/01932690500374250Suche in Google Scholar
45. Balogh, J., Olsson, U. and Pedersen, J. S.: J. Phys. Chem. B111 (2007) 682. 10.1021/jp0660031Suche in Google Scholar PubMed
46. Balogh, J. and Olsson, U.: J. Disper. Sci. Technol.28 (2007) 223. 10.1080/01932690601058752Suche in Google Scholar
47. Gelbart, W. M., Ben-Shaul, A. and Roux, D.: Micelles, Membranes, Microemulsions, and Monolayers, Springer-Verlag, New York, 1994. 10.1007/978-1-4613-8389-5Suche in Google Scholar
48. Arleth, L. and Pedersen, J. S.: Phys. Rev. E63 (2001) 061406-1–061406-18. 10.1103/PhysRevE.63.061406Suche in Google Scholar PubMed
49. Kotlarchyk, M., Chen, S. H. and Huang, J. S.: J. Phys. Chem.86 (1982) 3273. 10.1021/j100214a001Suche in Google Scholar
50. Mittelbach, P. and Porod, G.: Acta Phys. AustriacaXV (1962) 122.Suche in Google Scholar
51. Garti, N., Spernath, A., Aserin, A. and Lutz, R.: Soft Matter1 (2005) 206. 10.1039/b506233kSuche in Google Scholar PubMed
52. Garti, N., Avrahami, M. and Aserin, A.: J. Colloid Interface Sci.299 (2006) 352. 10.1016/j.jcis.2006.01.060Suche in Google Scholar PubMed
53. Rozner, S., Aserin, A., Wachtel, E. and Garti, N.: J. Colloid Interface Sci.314 (2007) 718. 10.1016/j.jcis.2007.05.091Suche in Google Scholar PubMed
54. Kogan, A., Aserin, A. and Garti, N.: J. Colloid Interface Sci.315 (2007) 637. 10.1016/j.jcis.2007.06.087Suche in Google Scholar PubMed
© 2011, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Editorial
- Rückblick auf zwei erfolgreiche Jahre 2009/2010
- Application
- Surface Activity and Adsorption Properties of New Perfluorinated Carbohydrate Surfactants
- Novel Surfactants
- Study of Glycerol Residue as a Carbon Source for Production of Rhamnolipids by Pseudomonas aeruginosa (ATCC 10145)
- Study of CLSI-M44-A Disk Diffusion Method for Determining the Susceptibility of Candida Species against Novel Complexes Derived from Copper Stearate with 2-Amino Benzothiazoles
- European Detergents Conference
- Bicontinuous Microemulsion as Reaction Medium for ω-Transaminase Catalysed Biotransformations
- Physical Chemistry
- SAXS Study on Azithromycin Loaded Nonionic Microemulsions
- Effects of Alkaline Cations on Self-assembly of Cetylpyridinium Surfactants
- Influence of Surfactants on Release of Chlorhexidine from Hydrogels
- Environmental Chemistry
- Influence of Surfactants on the Performance of Calcium Phosphate Scale Inhibitors
- Technical Chemistry
- Preparation and Characterization of a Phosphorous Free and Non-Nitrogen Antiscalant in Industrial Cooling Systems
- Preparation and Characterization of Pillared Derivatives from δ-Layered Sodium Disilicate and their Tribological Properties in Liquid Paraffin
- Synthesis
- An Efficient and Mild Procedure for the Preparation of Aldonic Acids via Oxidation of D-Sucrose by Employing N-Bromophthalimide Oxidant and Micellar System
- Synthesis and Properties of Some N-Acylethylenediamine Triacetic Acid Chelating Surfactants
- Conference and Meeting Report
- Sixth European Detergents Conference Report
- GDCh-Intensive Course Surfactants: Detergents, Cosmetics, Technical Applications
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Editorial
- Rückblick auf zwei erfolgreiche Jahre 2009/2010
- Application
- Surface Activity and Adsorption Properties of New Perfluorinated Carbohydrate Surfactants
- Novel Surfactants
- Study of Glycerol Residue as a Carbon Source for Production of Rhamnolipids by Pseudomonas aeruginosa (ATCC 10145)
- Study of CLSI-M44-A Disk Diffusion Method for Determining the Susceptibility of Candida Species against Novel Complexes Derived from Copper Stearate with 2-Amino Benzothiazoles
- European Detergents Conference
- Bicontinuous Microemulsion as Reaction Medium for ω-Transaminase Catalysed Biotransformations
- Physical Chemistry
- SAXS Study on Azithromycin Loaded Nonionic Microemulsions
- Effects of Alkaline Cations on Self-assembly of Cetylpyridinium Surfactants
- Influence of Surfactants on Release of Chlorhexidine from Hydrogels
- Environmental Chemistry
- Influence of Surfactants on the Performance of Calcium Phosphate Scale Inhibitors
- Technical Chemistry
- Preparation and Characterization of a Phosphorous Free and Non-Nitrogen Antiscalant in Industrial Cooling Systems
- Preparation and Characterization of Pillared Derivatives from δ-Layered Sodium Disilicate and their Tribological Properties in Liquid Paraffin
- Synthesis
- An Efficient and Mild Procedure for the Preparation of Aldonic Acids via Oxidation of D-Sucrose by Employing N-Bromophthalimide Oxidant and Micellar System
- Synthesis and Properties of Some N-Acylethylenediamine Triacetic Acid Chelating Surfactants
- Conference and Meeting Report
- Sixth European Detergents Conference Report
- GDCh-Intensive Course Surfactants: Detergents, Cosmetics, Technical Applications