Home Study of Glycerol Residue as a Carbon Source for Production of Rhamnolipids by Pseudomonas aeruginosa (ATCC 10145)
Article
Licensed
Unlicensed Requires Authentication

Study of Glycerol Residue as a Carbon Source for Production of Rhamnolipids by Pseudomonas aeruginosa (ATCC 10145)

  • S. D. Wadekar , S. V. Patil , S. B. Kale , A. M. Lali , D. N. Bhowmick and A. P. Pratap
Published/Copyright: April 5, 2013
Become an author with De Gruyter Brill

Abstract

Rhamnolipid is the simplest class of biosurfactants with a well defined structure. The main obstacle in commercialization of biosurfactant especially rhamnolipids is the higher cost of the production. The production cost can be reduced by using economical carbon sources. Glycerol residue is available from glycerin distillation plant at low cost. It can be used as carbon source for rhamnolipid production using Pseudomonas aeruginosa (ATCC 10145). The optimum concentration of glycerol residue was 5% weight by volume (w/v) yielding maximum rhamnolipids at 2.50 g/L in the broth. From batch monitoring of polyglycerol and monoglycerol consumption, it appeared that polyglycerols were first hydrolyzed to monoglycerol in the broth itself and consumed as carbon source. The product had components similar to rhamnolipids synthesized on pure glycerol under the same conditions. This indicated the potential of glycerol residue as economic substrate for production of rhamnolipids.

Kurzfassung

Rhamnolipid gehört zu der einfachsten Klasse von Biotensiden mit gut bekannter Struktur. Das größte Problem bei der kommerziellen Herstellung von Biotensiden speziell der Rhamnolipide sind die hohen Produktionskosten. Diese Kosten können durch Einsatz von wirtschaftlichen Kohlenstoffquellen reduziert werden. Glyzerinrückstände stehen kostengünstig aus Glyzerindestillationen von Pflanzen zur Verfügung. Sie können als Kohlenstoffquelle für die Rhamnolipidproduktion unter Verwendung von Pseudomonas aeruginosa (ATCC 10145) genutzt werden. Die optimale Konzentration des Glyzerinrückstandes von 5% (w/v) lieferte maximal 2.5 g/L Rhamnolipide in der Lösung. Die Serienuntersuchung des Polyglyzerin- und Monoglyzerinverbrauchs zeigte, dass Polyglyzerin zuerst zu Monoglyzerin in der Lösung hydrolysiert und als Kohlenstoffquelle verbraucht wurde. Das Produkt hatte Komponenten ähnlich denen von Rhamnolipiden, die in reinem Glyzerin unter gleichen Bedingungen synthetisiert wurden. Dieses Ergebnis belegt das Potenzial von Glyzerinrückständen als Substrat für die wirtschaftliche Herstellung von Rhanmolipiden.


Dr. Amit P. Pratap, Assistant Professor, Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, (University under Section 3 of UGC Act 1956; Formerly UDCT/UICT), Nathalal Parekh Marg, Matunga (East), Mumbai – 400 019 India, Tel.: +91-22-33611111/2222 Ext. 2557, Fax: +91-22-33611020. E-Mail: , , Web: www.ictmumbai.org

S. D. Wadekar completed his graduation and post graduation in Oil Technology in 2006 from Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai. At present he is working for his doctoral programme in the Oils Dept. at ICT.

S. V. Patil completed his graduation in Oil Technology in 2008 from Department of Oils, Oleochemicals and Surfactants Technology, North Maharashtra University Jalgaon. At present he is working for his M. Tech. degree in the Oils Dept. at ICT.

S. B. Kale completed his graduation in Pharmaceutical Sciences and post graduation in Bioprocess Technology from ICT, Mumbai and obtained his doctorate degree in the field of Biotechnology from ICT, Mumbai. He is working as lecturer in DBT-ICT Centre for Energy Biosciences from past 2 years. His research interest includes biotransformation, fermentation, chromatographic separation etc.

A. M. Lali completed his graduation and post graduation in Chemical Engineering from ICT, Mumbai and obtained his doctorate degree in the field of multiphase reactors from ICT, Mumbai. He is working as Professor in Chemical Engineering Department and also serving the institute as Co-ordinator, DBT-ICT Centre for Energy Biosciences. For the past twenty years he is involved in the teaching, research and development in the field of biotechnology, protein purification, biotransformation, fermentation, chromatographic separation etc.

D. N. Bhowmick completed his graduation and post graduation in Oil Technology from HBTI, Kanpur his doctorate degree from Indian Institute of Technology (IIT), Mumbai. He was heading the department for over 10 years and at present he is working as a Dean (Academic programme). For the past twenty five years he is involved in the teaching, research and development in the field of membrane technology, and specialty products.

Dr. Amit P. Pratap completed his graduation and post graduation in Oil Technology in 2001 and obtained his doctorate degree in 2006 from Institute of Chemical Technology, Mumbai. He served the department as a “Professor J. G. Kane Academic Associate” for over two years and at present he is working as a Lecturer (Senior Scale). For the past seven years he is involved in the teaching, research and development in the field of vegetable oil based lubricants, additives and biosurfactants. His research interest includes triboapplications of vegetable oils, structural modifications of oils and fats, biosurfactants, and specialty products.


References

1. Banat, I. M., Makkar, R. S. and Cameotra, S. S.: Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol.53 (2000) 495508. 10.1007/s002530051648Search in Google Scholar PubMed

2. Raiders, R. A., Knapp, R. M. and McInerney, M. J.: Microbial selective plugging and enhanced oil recovery. J. Ind. Microbiol.4 (1989) 215230. 10.1007/BF01574079Search in Google Scholar

3. Banat, I. M.: Characterization of biosurfactants and their use in pollution removal – state of the art (review). Acta. Biotechnol.15 (1995) 251267. 10.1002/abio.370150302Search in Google Scholar

4. Klekner, V. and Kosaric, N.: Biosurfactants for cosmetics. in: N.Kosaric (Ed.), Biosurfactants production, properties, applications, Marcel Dekker Inc., New York (1993) 373384.Search in Google Scholar

5. Kesting, W., Tummuscheit, M., Schacht, H. and Schollmeyer, E.: Ecological washing of textiles with microbial surfactants. Prog. Colloid. Polym. Sci.101 (1996) 125130. 10.1007/BFb0114432Search in Google Scholar

6. Cameotra, S. S. and Makkar, R. S.: Synthesis of Biosurfactants in Extreme Conditions. Appl. Microbiol. Biotechnol.50 (1998) 520529. 10.1007/s002530051329Search in Google Scholar PubMed

7. Itoh, S., Honda, H., Tomita, F. and Suzuki, T.: Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin. J. Antibiot. (Tokyo)24 (1971) 855859. 10.7164/antibiotics.24.855Search in Google Scholar PubMed

8. Desai, J. D. and Banat, I. M.: Microbial production of surfactants and their commercial potential. Microbiol. Mol. Bol. Rev.61 (1997) 4764.Search in Google Scholar

9. Mulligan, C. N. and Gibbs, B. F.: Factors influencing the economics of biosurfactants. in: N.Kosaric (Ed.), Biosurfactants production, properties, applications, Marcel Dekker Inc., New York (1993) 329371.Search in Google Scholar

10. Haba, E., Espuny, M. J., Busquets, M. and Manresa, A.: Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oil. J. Appl. Microbiol.88 (2000) 379380. 10.1046/j.1365-2672.2000.00961.xSearch in Google Scholar PubMed

11. Abalos, A., Pinazo, A., Infante, M. R., Casals, M., Garía, F. and Manresa, A.: Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir17 (2001) 13671371. 10.1021/la0011735Search in Google Scholar

12. Wei, Y. H., Chou, C. L. and Chang, J. S.: Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem. Eng. J.27 (2005) 146154. 10.1016/j.bej.2005.08.028Search in Google Scholar

13. Babu, P. S., Vaidya, A. N., Bal, A. S., Kapur, R., Juwarkar, A. and Khanna, P.: Kinetics of biosurfactant production by Pseudomonas aeruginosa strain BS2 from industrial wastes. Biotechnol. Lett.18 (1996) 263268.Search in Google Scholar

14. Benincasa, M., Abalos, A., Oliveira, I. and Manresa, A.: Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie van Leeuwenhoek85 (2004) 18. 10.1023/B:ANTO.0000020148.45523.41Search in Google Scholar

15. Wadekar, S. D., Patil, S. V., Kale, S. B., Lali, A. M., Bhowmick, D. N. and Pratap, A. P.: Study of Glycerol and Sweet Water as a Carbon Source for Production of Rhamnolipids by Naturally Occurring Strains of Pseudomonas aeruginosa (ATCC 10145 and ATCC 9027). Tenside Surf. Det.47 (2010) 238242.Search in Google Scholar

16. Burke, M. R.: Soaps. in: F.Shahidi (Ed.), Bailey's Industrial Oil and Fat Products, 6th Edn., Vol. 6, A John Wiley & Sons, Inc., New Jersey (2005) 103136.Search in Google Scholar

17. Yong, K. C., Ooi, T. L., Dzulkefly, K., Wanyunus, W. M. Z. and Hazimah, A. H.: Characterization of Glycerol Residue from a Palm Kernel Oil Methyl Ester Plant. J. Oil Palm Res.13-2 (2001) 16.Search in Google Scholar

18. Saiden, P. and Martin, J. B.: Process for Preparing Polyglycerol. U.S. Patent 3,968,169 (1976).Search in Google Scholar

19. Stier, R. E. and Lucia, J.: Diglycerol: A Humectant with Unique Sensory Qualities. Cosmetics Toiletries118 (2003) 383390.Search in Google Scholar

20. A.O.C.S.Method Ea 6-51. in: D.Firestone (Ed.), Official Methods and Recommended Practices of the American Oil Chemists' Society, AOCS Press, Illinois (1994) 651.Search in Google Scholar

21. Troy, A. and Alsop, W.: The Estimation of Glycerol, Diglycerol, and Polyglycerol in Commercial Diglycerol. J. Am. Oil Chem. Soc.25 (1948) 394398. 10.1007/BF02593288Search in Google Scholar

22. Chandrasekaran, E. V. and Bemiller, J. N.: Constituent Analyses of Glycosamino-glycans. in: R. L.Whistler (Ed.), Methods in Carbohydrate Chemistry, Vol. 8, Academic Press Inc., New York (1980) 8996.Search in Google Scholar

23. Chayabutra, C., Wu, J. and Ju, L. K.: Rhamnolipid production by Pseudomonas aeruginosa under denitrification: Effects of limiting nutrients and carbon substrates. Biotechnol. Bioeng.72 (2001) 2533. 10.1002/1097-0290(20010105)72:1<25::AID-BIT4>3.0.CO;2-JSearch in Google Scholar

24. Hu, Y. and Ju, L.: Sophorolipids production from different lipid precursors observed with LC-MS. Enzyme Microb. Technol.29 (2001) 593601. 10.1016/S0141-0229(01)00439-2Search in Google Scholar

25. Haines, J. R. and Alexander, M.: Microbial degradation of polyethylene glycols. Appl. Microbiol.29 (1975) 621625.Search in Google Scholar

26. Sim, L., Ward, O. P. and Li, Z-Y.: Production and characterization of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J. Ind. Microbiol. Biotechnol.19 (1997) 232238. 10.1038/sj.jim.2900450Search in Google Scholar

27. Jarvis, F. G. and Johnson, M. J.: A glyco-lipide produced by Pseudomonas aeruginosa. J. Am. Chem. Soc.71 (1949) 41244126. 10.1021/ja01180a073Search in Google Scholar

28. Santa Anna, L. M., Sebastian, G. V., Menezes, E. P., Alves, T. L. M., Santos, A. S., Pereira, N. (Jr.) and Freire, D. M. G.: Production of biosurfactants from Pseudomonas aeruginosa PA1 isolated in oil environments. Braz. J. Chem. Eng.19 (2002) 159166. 10.1590/S0104-66322002000200011Search in Google Scholar

29. Wei, Y-H., Cheng, C-L., Chien, C-C. and Wan, H-M.: Enhanced di-rhamnolipid production with an indigenous isolate Pseudomonas aeruginosa J16. Process Biochem.43 (2008) 769774. 10.1016/j.procbio.2008.03.009Search in Google Scholar

30. Nitschke, M., Costa, S., Haddad, R., Gonçalves, L., Eberlin, M. N. and Contiero, J.: Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol. Prog.21 (2005) 15621566. 10.1021/bp050198xSearch in Google Scholar

31. Rahman, K. S. M., Rahman, T. J., McClean, S., Marchant, R. and Banat, I. M.: Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol. Prog.18 (2002) 12771281. 10.1021/bp020071xSearch in Google Scholar

32. Wu, J.-Y., Yeh, K.-L., Lu, W.-B., Lin, C.-L. and Chang, J.-S.: Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresour. Technol.99 (2008) 11571164. 10.1016/j.biortech.2007.02.026Search in Google Scholar

33. Silva, S. N. R. L., Farias, C. B. B., Rufino, R. D., Luna, J. M. and Sarubbo, L. A.: Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf., B79 (2010) 174183. 10.1016/j.colsurfb.2010.03.050Search in Google Scholar PubMed

34. Monteiro, S. A., Sassaki, G. L., DeSouza, L. M., Meira, J. A., DeAraújo, J. M., Mitchell, D. A., Ramos, L. P., and Krieger, N.: Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem. Phys. Lipids147 (2007) 113. 10.1016/j.chemphyslip.2007.02.001Search in Google Scholar PubMed

35. Hauser, G. and Karnovsky, M. L.: Rhamnose and rhamnolipid biosynthesis by Pseudomonas aeruginosa. J. Biol. Chem.224 (1957) 91105.Search in Google Scholar

Received: 2010-09-14
Published Online: 2013-04-05
Published in Print: 2011-01-01

© 2011, Carl Hanser Publisher, Munich

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Abstracts
  4. Abstracts
  5. Editorial
  6. Rückblick auf zwei erfolgreiche Jahre 2009/2010
  7. Application
  8. Surface Activity and Adsorption Properties of New Perfluorinated Carbohydrate Surfactants
  9. Novel Surfactants
  10. Study of Glycerol Residue as a Carbon Source for Production of Rhamnolipids by Pseudomonas aeruginosa (ATCC 10145)
  11. Study of CLSI-M44-A Disk Diffusion Method for Determining the Susceptibility of Candida Species against Novel Complexes Derived from Copper Stearate with 2-Amino Benzothiazoles
  12. European Detergents Conference
  13. Bicontinuous Microemulsion as Reaction Medium for ω-Transaminase Catalysed Biotransformations
  14. Physical Chemistry
  15. SAXS Study on Azithromycin Loaded Nonionic Microemulsions
  16. Effects of Alkaline Cations on Self-assembly of Cetylpyridinium Surfactants
  17. Influence of Surfactants on Release of Chlorhexidine from Hydrogels
  18. Environmental Chemistry
  19. Influence of Surfactants on the Performance of Calcium Phosphate Scale Inhibitors
  20. Technical Chemistry
  21. Preparation and Characterization of a Phosphorous Free and Non-Nitrogen Antiscalant in Industrial Cooling Systems
  22. Preparation and Characterization of Pillared Derivatives from δ-Layered Sodium Disilicate and their Tribological Properties in Liquid Paraffin
  23. Synthesis
  24. An Efficient and Mild Procedure for the Preparation of Aldonic Acids via Oxidation of D-Sucrose by Employing N-Bromophthalimide Oxidant and Micellar System
  25. Synthesis and Properties of Some N-Acylethylenediamine Triacetic Acid Chelating Surfactants
  26. Conference and Meeting Report
  27. Sixth European Detergents Conference Report
  28. GDCh-Intensive Course Surfactants: Detergents, Cosmetics, Technical Applications
Downloaded on 9.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110098/html
Scroll to top button