Home SAXS Study on Azithromycin Loaded Nonionic Microemulsions
Article
Licensed
Unlicensed Requires Authentication

SAXS Study on Azithromycin Loaded Nonionic Microemulsions

  • M. Fanun and O. Glatter
Published/Copyright: April 5, 2013
Become an author with De Gruyter Brill

Abstract

Structure of water/propylene glycol/ethoxylated mono-di-glyceride/peppermint oil/ethanol microemulsions solubilizing azithromycin has been investigated at room temperature by small-angle X-ray scattering (SAXS) technique. The scattering data were evaluated by Indirect Fourier Transformation (IFT) or Generalized Indirect Fourier Transformation (GIFT) methods depending on the aqueous phase content. The growth of the microemulsions droplets by increasing the water content and the effect of azithromycin incorporation in the microemulsions were investigated. The Indirect Fourier Transformation gives the real space pair-distance distribution function: a facile way for the quantitative estimation of structure parameters of the microemulsions. It was found that the size of the microemulsion aggregates or repeating distances in the microemulsion increases with the aqueous phase content. The maximum diameter of the drug free and drug loaded microemulsions aggregates depend on their microstructure. The values of the effective interaction radius of the microemulsions are higher for the drug free compared to the drug loaded microemulsions aggregates.

Kurzfassung

Die Struktur von Mikroemulsionen aus Wasser, Propylenglykol, ethoxilierten Mono-di-glyceriden, Pfefferminzöl und Ethanol, die Azithromycin lösen, wurde bei Raumtemperatur mit Hilfe der Röntgenkleinwinkelstreuung (SAXS) untersucht. Die Streudaten wurden mittels indirekter Fouriertransformation (IFT) oder generalisierter indirekter Fouriertransformation (GIFT) in Abhängigkeit von dem Wassergehalt ausgewertet. Das Wachstum der Mikroemulsionstropfen bei steigendem Wassergehalt und der Einfluss von Azithromycin-Zugaben in die Mikroemulsion wurden untersucht. Da die indirekte Fourier Transformation die Abstands-Verteilungsfunktion im Realraum liefert, lassen sich so leicht quantitative Aussagen über die Strukturparameter der Mikroemulsion gewinnen. Es wurde beobachtet, dass sich die Abmessungen der Mikroemulsionsaggregate oder die Wiederholabstände in der Mikroemulsion mit dem Wassergehalt zunehmen. Der maximale Durchmesser der freien und der mit Wirkstoff beladenen Mikroemulsionsaggregate hängt von ihrer Mikrostruktur ab. Der effektive Wechselwirkungsradius der Mikroemulsionen ist für die wirkstofffreien Aggregate größer als für die mit Wirkstoff beladenen Aggregate.


Dr. M. Fanun, Colloids and Surfaces Research Center, Al-Quds University, 51000 East Jerusalem, Palestine, Tel.: +97222799753, Fax: + 97222796960. E-Mail: or

Dr. Monzer Fanun received his Ph.D in 2003 at the Hebrew University of Jerusalem in applied chemistry. He is a professor and head of the colloids and surfaces research center at Al-Quds University, East Jerusalem, Palestine. His research focuses on colloidal systems for health care products and surfactant-based alternatives to organic solvents.

Dr. Otto Glatter got his Ph.D. in 1972 at the Technical University of Graz and University of Graz in Technical Physics. He is a professor for Physical Chemistry since 1992 in the Department of Chemistry of the Karl-Franzens-University in Graz, Austria and is leader of the research group on scattering methods. His research focuses on scattering methods and their application to soft condensed matter.


References

1. Fanun, M. (Ed.): Colloids in Drug Delivery, Taylor and Francis/CRC Press, Boca Raton, USA, 2010. 10.1201/CRCSURFACSCISearch in Google Scholar

2. Lawrence, M. J. and Rees, G. D.: Advanced Drug Delivery Reviews45 (2000) 89. 10.1016/S0169-409X(00)00103-4Search in Google Scholar

3. Fanun, M. (Ed.): Microemulsions: Properties and Application, Taylor and Francis/CRC Press, Boca Raton, USA, 2009.Search in Google Scholar

4. Evans, D. F. and Wennerström, H.: The Colloidal domain: where physics, chemistry, biology and technology meet. John Wiley & Sons, Inc; 1999.Search in Google Scholar

5. Stubenrauch, C. (Ed.): Microemulsion: Background, New Concepts, Applications, Perspective. John Wiley & Sons Ltd; 2009. 10.1002/9781444305524Search in Google Scholar

6. Holmberg, K.: Handbook of Applied Surface and Colloid Chemistry Volume 1. John Wiley & Sons Ltd; 2002.Search in Google Scholar

7. Holmberg, K., Jönsson, B., Kronberg, B. and Lindman, B.: Surfactants and Polymers in Aqueous Solution. John Wiley & Sons Ltd; 2003.10.1002/0470856424Search in Google Scholar

8. Kreilgaard, M.: Adv. Drug. Deliver. Rev.54 (2002) S77. 10.1016/S0169-409X(02)00116-3Search in Google Scholar

9. Heuschkel, S., Goebel, A. and Neubert, R. H. H.: J. Pharm. Sci.97 (2008) 603. 10.1002/jps.20995Search in Google Scholar PubMed

10. Heuschkel, S. and Neubert, R. H. H.: Chem-Ing-Tech.77 (2005) 239. 10.1002/cite.200407049Search in Google Scholar

11. Patravale, V. B. and Date, A. A.: Microemulsions: Pharmaceutical Applications. In: Stubenrauch, C., (editor), Microemulsion: Background, New Concepts, Applications, Perspective; John Wiley & Sons Ltd: 2009, 259300. 10.1002/9781444305524Search in Google Scholar

12. Djekic, L., Ibric, S. and Primorac, M.: Int. J. Pharm.361 (2008) 41. 10.1016/j.ijpharm.2008.05.002Search in Google Scholar PubMed

13. Djekic, L. and Primorac, M.: Int. J. Pharm.352 (2008) 231. 10.1016/j.ijpharm.2007.10.041Search in Google Scholar PubMed

14. Balogh, J. and Pedersen, J. S.: Investigating the Effect of Adding Drug (lidocaine) to a Drug delivery system using Small-Angle X-ray scattering. In: Horvolgyi, Z. D. E. K., editors. Colloids for Nano- and Biotechnology. Siofok Hungary: Springer-Verlag2008, p. 101106.10.1007/2882_2008_113Search in Google Scholar

15. Glatter, O., Strey, R., Schubert, K.-V. and Kaler, E. W.: Ber. Bunsenges. Phys. Chem.100 (1996) 323. 10.1002/bbpc.19961000319Search in Google Scholar

16. Brunner-Popela, J., Mittelbach, R., Strey, R., Schubert, K.-V., Kaler, E. W. and Glatter, O.: J. Chem. Phys.21 (1999) 10623. 10.1063/1.478993Search in Google Scholar

17. Glatter, O., Fritz, G., Lindner, H., Brunner-Popela, J., Mittelbach, R., Strey, R. and Egelhaaf, S. U.: Langmuir16 (2000) 8692. 10.1021/la000315sSearch in Google Scholar

18. Glatter, O., Orthaber, D., Stradner, A., Scherf, G., Fanun, M., Garti, N., Clément, V. and Leser, M. E.: J. Colloid Interface Sci.241 (2001) 215. 10.1006/jcis.2001.7670Search in Google Scholar PubMed

19. Yaghmur, A., de Campo, L., Aserin, A., GartiN. and Glatter, O.: Phys. Chem. Chem. Phys.6 (2004) 1524. 10.1039/b314625cSearch in Google Scholar

20. de Campo, L., Yaghmur, A., Sagalowicz, L., Watzke, H. and Glatter, O.: Langmuir20 (2004) 5254. 10.1021/la0499416Search in Google Scholar PubMed

21. Sato, T., Hossain, Md. K., Acharya, D. P., Glatter, O., Chiba, A. and Kunieda, H.: J. Phys. Chem. B108 (2004) 12927. 10.1021/jp048469uSearch in Google Scholar

22. Yaghmur, A., de Campo, L., Sagalowicz, L., Leser, M. E. and Glatter, O.: Langmuir, 21 (2005) 569. 10.1021/la0482711Search in Google Scholar PubMed

23. Yaghmur, A., de Campo, L., Salentinig, S., Sagalowicz, L., Leser, M. E. and Glatter, O.: Langmuir22 (2006) 517. 10.1021/la052109wSearch in Google Scholar PubMed

24. Graveland-Bikker, J. F., Fritz, G., Glatter, O. and de Kruif, C. G.: J. Appl. Cryst.39 (2006) 180. 10.1107/S0021889805043244Search in Google Scholar

25. Yaghmur, A., de Campo, L., Sagalowicz, L., Leser, M. E. and Glatter, O.: Langmuir22 (2006) 9919. 10.1021/la061303vSearch in Google Scholar PubMed

26. Hellweg, T.: Scattering Techniques to Study the Microstructure of Microemulsions. In Stubenrauch, C., (editor), Microemulsion: Background, New Concepts, Applications, Perspective; John Wiley & Sons Ltd: 2009, 4883. 10.1002/9781444305524Search in Google Scholar

27. Gradzielski, M.: Curr. Opin. Colloid. Interface Sci.13 (2008) 263. 10.1016/j.cocis.2007.10.006Search in Google Scholar

28. Nayeri, M., Zackrisson, M. and Bergenholtz, J.: J. Phys. Chem. B113 (2009) 8296. 10.1021/jp811482wSearch in Google Scholar PubMed

29. Teubner, M. and Strey, R.: J. Chem. Phys.87 (1987) 3195. 10.1063/1.453006Search in Google Scholar

30. Glatter, O.: J. Appl. Cryst.10 (1977) 415. 10.1107/S0021889877013879Search in Google Scholar

31. Brunner-Popela, J. and Glatter, O.: J. Applied Cryst.30 (1997) 431. 10.1107/S0021889896015749Search in Google Scholar

32. Weyerich, B., Brunner-Popela, J. and Glatter, O.: J. Appl. Cryst.32 (1999) 197. 10.1107/S0021889898011790Search in Google Scholar

33. Glatter, O., Fritz, G., Lindner, H., Brunner-Popela, J., Mittelbach, R., Strey, R. and Egelhaaf, S. U.: Langmuir16 (2000) 8692. 10.1021/la000315sSearch in Google Scholar

34. Brunner-Popela, J., Mittelbach, R., Strey, R., Schubert, K.-V., Kaler, E. W. and Glatter, O.: J. Chem. Phys.110 (1999) 10623. 10.1063/1.478993Search in Google Scholar

35. Frühwirth, Th., Fritz, G., Freiberger, N. and Glatter, O.: J. Appl. Cryst.37 (2004) 703. 10.1107/S0021889804012956Search in Google Scholar

36. Bergmann, A., Fritz, G. and Glatter, O.: J. Appl. Cryst.33 (2000) 1212. 10.1107/S0021889800008372Search in Google Scholar

37. Fritz, G., Bergmann, A. and Glatter, O.: J. Chem. Phys.113 (2000) 9733. 10.1063/1.1321770Search in Google Scholar

38. Maranzano, B. J., Wagner, N. J., Fritz, G. and Glatter, O.: Langmuir16 (2000) 10556. 10.1021/la0007426Search in Google Scholar

39. Strey, R., Glatter, O., Schubert, K.-V. and Kaler, E. W.: J. Chem. Phys.105 (1996) 11751188. 10.1063/1.471960Search in Google Scholar

40. Baciu, M., Holmes, M. C. and Leaver, M. S.: J. Phys. Chem. B111 (2007) 909. 10.1021/jp066595nSearch in Google Scholar PubMed

41. Orthaber, D., Bergmann, A. and Glatter, O.: J. Appl. Cryst.33 (2000) 218. 10.1107/S0021889899015216Search in Google Scholar

42. Leaver, M. S., Olsson, U., Wennerström, H. and Strey, R.: J. Phys. Ii4 (1994) 515. 10.1051/jp2:1994142Search in Google Scholar

43. Leaver, M., Furo, I. and Olsson, U.: Langmuir11 (1995) 1524. 10.1021/la00005a020Search in Google Scholar

44. Balogh, J., Olsson, U. and Pedersen, J. S.: J. Disper. Sci. Technol.27 (2006) 497. 10.1080/01932690500374250Search in Google Scholar

45. Balogh, J., Olsson, U. and Pedersen, J. S.: J. Phys. Chem. B111 (2007) 682. 10.1021/jp0660031Search in Google Scholar PubMed

46. Balogh, J. and Olsson, U.: J. Disper. Sci. Technol.28 (2007) 223. 10.1080/01932690601058752Search in Google Scholar

47. Gelbart, W. M., Ben-Shaul, A. and Roux, D.: Micelles, Membranes, Microemulsions, and Monolayers, Springer-Verlag, New York, 1994. 10.1007/978-1-4613-8389-5Search in Google Scholar

48. Arleth, L. and Pedersen, J. S.: Phys. Rev. E63 (2001) 061406-1061406-18. 10.1103/PhysRevE.63.061406Search in Google Scholar PubMed

49. Kotlarchyk, M., Chen, S. H. and Huang, J. S.: J. Phys. Chem.86 (1982) 3273. 10.1021/j100214a001Search in Google Scholar

50. Mittelbach, P. and Porod, G.: Acta Phys. AustriacaXV (1962) 122.Search in Google Scholar

51. Garti, N., Spernath, A., Aserin, A. and Lutz, R.: Soft Matter1 (2005) 206. 10.1039/b506233kSearch in Google Scholar PubMed

52. Garti, N., Avrahami, M. and Aserin, A.: J. Colloid Interface Sci.299 (2006) 352. 10.1016/j.jcis.2006.01.060Search in Google Scholar PubMed

53. Rozner, S., Aserin, A., Wachtel, E. and Garti, N.: J. Colloid Interface Sci.314 (2007) 718. 10.1016/j.jcis.2007.05.091Search in Google Scholar PubMed

54. Kogan, A., Aserin, A. and Garti, N.: J. Colloid Interface Sci.315 (2007) 637. 10.1016/j.jcis.2007.06.087Search in Google Scholar PubMed

Received: 2010-05-05
Published Online: 2013-04-05
Published in Print: 2011-01-01

© 2011, Carl Hanser Publisher, Munich

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Abstracts
  4. Abstracts
  5. Editorial
  6. Rückblick auf zwei erfolgreiche Jahre 2009/2010
  7. Application
  8. Surface Activity and Adsorption Properties of New Perfluorinated Carbohydrate Surfactants
  9. Novel Surfactants
  10. Study of Glycerol Residue as a Carbon Source for Production of Rhamnolipids by Pseudomonas aeruginosa (ATCC 10145)
  11. Study of CLSI-M44-A Disk Diffusion Method for Determining the Susceptibility of Candida Species against Novel Complexes Derived from Copper Stearate with 2-Amino Benzothiazoles
  12. European Detergents Conference
  13. Bicontinuous Microemulsion as Reaction Medium for ω-Transaminase Catalysed Biotransformations
  14. Physical Chemistry
  15. SAXS Study on Azithromycin Loaded Nonionic Microemulsions
  16. Effects of Alkaline Cations on Self-assembly of Cetylpyridinium Surfactants
  17. Influence of Surfactants on Release of Chlorhexidine from Hydrogels
  18. Environmental Chemistry
  19. Influence of Surfactants on the Performance of Calcium Phosphate Scale Inhibitors
  20. Technical Chemistry
  21. Preparation and Characterization of a Phosphorous Free and Non-Nitrogen Antiscalant in Industrial Cooling Systems
  22. Preparation and Characterization of Pillared Derivatives from δ-Layered Sodium Disilicate and their Tribological Properties in Liquid Paraffin
  23. Synthesis
  24. An Efficient and Mild Procedure for the Preparation of Aldonic Acids via Oxidation of D-Sucrose by Employing N-Bromophthalimide Oxidant and Micellar System
  25. Synthesis and Properties of Some N-Acylethylenediamine Triacetic Acid Chelating Surfactants
  26. Conference and Meeting Report
  27. Sixth European Detergents Conference Report
  28. GDCh-Intensive Course Surfactants: Detergents, Cosmetics, Technical Applications
Downloaded on 9.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110101/html
Scroll to top button