Study of Glycerol Residue as a Carbon Source for Production of Rhamnolipids by Pseudomonas aeruginosa (ATCC 10145)
-
S. D. Wadekar
Abstract
Rhamnolipid is the simplest class of biosurfactants with a well defined structure. The main obstacle in commercialization of biosurfactant especially rhamnolipids is the higher cost of the production. The production cost can be reduced by using economical carbon sources. Glycerol residue is available from glycerin distillation plant at low cost. It can be used as carbon source for rhamnolipid production using Pseudomonas aeruginosa (ATCC 10145). The optimum concentration of glycerol residue was 5% weight by volume (w/v) yielding maximum rhamnolipids at 2.50 g/L in the broth. From batch monitoring of polyglycerol and monoglycerol consumption, it appeared that polyglycerols were first hydrolyzed to monoglycerol in the broth itself and consumed as carbon source. The product had components similar to rhamnolipids synthesized on pure glycerol under the same conditions. This indicated the potential of glycerol residue as economic substrate for production of rhamnolipids.
Kurzfassung
Rhamnolipid gehört zu der einfachsten Klasse von Biotensiden mit gut bekannter Struktur. Das größte Problem bei der kommerziellen Herstellung von Biotensiden speziell der Rhamnolipide sind die hohen Produktionskosten. Diese Kosten können durch Einsatz von wirtschaftlichen Kohlenstoffquellen reduziert werden. Glyzerinrückstände stehen kostengünstig aus Glyzerindestillationen von Pflanzen zur Verfügung. Sie können als Kohlenstoffquelle für die Rhamnolipidproduktion unter Verwendung von Pseudomonas aeruginosa (ATCC 10145) genutzt werden. Die optimale Konzentration des Glyzerinrückstandes von 5% (w/v) lieferte maximal 2.5 g/L Rhamnolipide in der Lösung. Die Serienuntersuchung des Polyglyzerin- und Monoglyzerinverbrauchs zeigte, dass Polyglyzerin zuerst zu Monoglyzerin in der Lösung hydrolysiert und als Kohlenstoffquelle verbraucht wurde. Das Produkt hatte Komponenten ähnlich denen von Rhamnolipiden, die in reinem Glyzerin unter gleichen Bedingungen synthetisiert wurden. Dieses Ergebnis belegt das Potenzial von Glyzerinrückständen als Substrat für die wirtschaftliche Herstellung von Rhanmolipiden.
References
1. Banat, I. M., Makkar, R. S. and Cameotra, S. S.: Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol.53 (2000) 495–508. 10.1007/s002530051648Suche in Google Scholar PubMed
2. Raiders, R. A., Knapp, R. M. and McInerney, M. J.: Microbial selective plugging and enhanced oil recovery. J. Ind. Microbiol.4 (1989) 215–230. 10.1007/BF01574079Suche in Google Scholar
3. Banat, I. M.: Characterization of biosurfactants and their use in pollution removal – state of the art (review). Acta. Biotechnol.15 (1995) 251–267. 10.1002/abio.370150302Suche in Google Scholar
4. Klekner, V. and Kosaric, N.: Biosurfactants for cosmetics. in: N.Kosaric (Ed.), Biosurfactants production, properties, applications, Marcel Dekker Inc., New York (1993) 373–384.Suche in Google Scholar
5. Kesting, W., Tummuscheit, M., Schacht, H. and Schollmeyer, E.: Ecological washing of textiles with microbial surfactants. Prog. Colloid. Polym. Sci.101 (1996) 125–130. 10.1007/BFb0114432Suche in Google Scholar
6. Cameotra, S. S. and Makkar, R. S.: Synthesis of Biosurfactants in Extreme Conditions. Appl. Microbiol. Biotechnol.50 (1998) 520–529. 10.1007/s002530051329Suche in Google Scholar PubMed
7. Itoh, S., Honda, H., Tomita, F. and Suzuki, T.: Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin. J. Antibiot. (Tokyo)24 (1971) 855–859. 10.7164/antibiotics.24.855Suche in Google Scholar PubMed
8. Desai, J. D. and Banat, I. M.: Microbial production of surfactants and their commercial potential. Microbiol. Mol. Bol. Rev.61 (1997) 47–64.Suche in Google Scholar
9. Mulligan, C. N. and Gibbs, B. F.: Factors influencing the economics of biosurfactants. in: N.Kosaric (Ed.), Biosurfactants production, properties, applications, Marcel Dekker Inc., New York (1993) 329–371.Suche in Google Scholar
10. Haba, E., Espuny, M. J., Busquets, M. and Manresa, A.: Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oil. J. Appl. Microbiol.88 (2000) 379–380. 10.1046/j.1365-2672.2000.00961.xSuche in Google Scholar PubMed
11. Abalos, A., Pinazo, A., Infante, M. R., Casals, M., Garía, F. and Manresa, A.: Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir17 (2001) 1367–1371. 10.1021/la0011735Suche in Google Scholar
12. Wei, Y. H., Chou, C. L. and Chang, J. S.: Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem. Eng. J.27 (2005) 146–154. 10.1016/j.bej.2005.08.028Suche in Google Scholar
13. Babu, P. S., Vaidya, A. N., Bal, A. S., Kapur, R., Juwarkar, A. and Khanna, P.: Kinetics of biosurfactant production by Pseudomonas aeruginosa strain BS2 from industrial wastes. Biotechnol. Lett.18 (1996) 263–268.Suche in Google Scholar
14. Benincasa, M., Abalos, A., Oliveira, I. and Manresa, A.: Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie van Leeuwenhoek85 (2004) 1–8. 10.1023/B:ANTO.0000020148.45523.41Suche in Google Scholar
15. Wadekar, S. D., Patil, S. V., Kale, S. B., Lali, A. M., Bhowmick, D. N. and Pratap, A. P.: Study of Glycerol and Sweet Water as a Carbon Source for Production of Rhamnolipids by Naturally Occurring Strains of Pseudomonas aeruginosa (ATCC 10145 and ATCC 9027). Tenside Surf. Det.47 (2010) 238–242.Suche in Google Scholar
16. Burke, M. R.: Soaps. in: F.Shahidi (Ed.), Bailey's Industrial Oil and Fat Products, 6th Edn., Vol. 6, A John Wiley & Sons, Inc., New Jersey (2005) 103–136.Suche in Google Scholar
17. Yong, K. C., Ooi, T. L., Dzulkefly, K., Wanyunus, W. M. Z. and Hazimah, A. H.: Characterization of Glycerol Residue from a Palm Kernel Oil Methyl Ester Plant. J. Oil Palm Res.13-2 (2001) 1–6.Suche in Google Scholar
18. Saiden, P. and Martin, J. B.: Process for Preparing Polyglycerol. U.S. Patent 3,968,169 (1976).Suche in Google Scholar
19. Stier, R. E. and Lucia, J.: Diglycerol: A Humectant with Unique Sensory Qualities. Cosmetics Toiletries118 (2003) 383–390.Suche in Google Scholar
20. A.O.C.S.Method Ea 6-51. in: D.Firestone (Ed.), Official Methods and Recommended Practices of the American Oil Chemists' Society, AOCS Press, Illinois (1994) 6–51.Suche in Google Scholar
21. Troy, A. and Alsop, W.: The Estimation of Glycerol, Diglycerol, and Polyglycerol in Commercial Diglycerol. J. Am. Oil Chem. Soc.25 (1948) 394–398. 10.1007/BF02593288Suche in Google Scholar
22. Chandrasekaran, E. V. and Bemiller, J. N.: Constituent Analyses of Glycosamino-glycans. in: R. L.Whistler (Ed.), Methods in Carbohydrate Chemistry, Vol. 8, Academic Press Inc., New York (1980) 89–96.Suche in Google Scholar
23. Chayabutra, C., Wu, J. and Ju, L. K.: Rhamnolipid production by Pseudomonas aeruginosa under denitrification: Effects of limiting nutrients and carbon substrates. Biotechnol. Bioeng.72 (2001) 25–33. 10.1002/1097-0290(20010105)72:1<25::AID-BIT4>3.0.CO;2-JSuche in Google Scholar
24. Hu, Y. and Ju, L.: Sophorolipids production from different lipid precursors observed with LC-MS. Enzyme Microb. Technol.29 (2001) 593–601. 10.1016/S0141-0229(01)00439-2Suche in Google Scholar
25. Haines, J. R. and Alexander, M.: Microbial degradation of polyethylene glycols. Appl. Microbiol.29 (1975) 621–625.Suche in Google Scholar
26. Sim, L., Ward, O. P. and Li, Z-Y.: Production and characterization of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J. Ind. Microbiol. Biotechnol.19 (1997) 232–238. 10.1038/sj.jim.2900450Suche in Google Scholar
27. Jarvis, F. G. and Johnson, M. J.: A glyco-lipide produced by Pseudomonas aeruginosa. J. Am. Chem. Soc.71 (1949) 4124–4126. 10.1021/ja01180a073Suche in Google Scholar
28. Santa Anna, L. M., Sebastian, G. V., Menezes, E. P., Alves, T. L. M., Santos, A. S., Pereira, N. (Jr.) and Freire, D. M. G.: Production of biosurfactants from Pseudomonas aeruginosa PA1 isolated in oil environments. Braz. J. Chem. Eng.19 (2002) 159–166. 10.1590/S0104-66322002000200011Suche in Google Scholar
29. Wei, Y-H., Cheng, C-L., Chien, C-C. and Wan, H-M.: Enhanced di-rhamnolipid production with an indigenous isolate Pseudomonas aeruginosa J16. Process Biochem.43 (2008) 769–774. 10.1016/j.procbio.2008.03.009Suche in Google Scholar
30. Nitschke, M., Costa, S., Haddad, R., Gonçalves, L., Eberlin, M. N. and Contiero, J.: Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol. Prog.21 (2005) 1562–1566. 10.1021/bp050198xSuche in Google Scholar
31. Rahman, K. S. M., Rahman, T. J., McClean, S., Marchant, R. and Banat, I. M.: Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol. Prog.18 (2002) 1277–1281. 10.1021/bp020071xSuche in Google Scholar
32. Wu, J.-Y., Yeh, K.-L., Lu, W.-B., Lin, C.-L. and Chang, J.-S.: Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresour. Technol.99 (2008) 1157–1164. 10.1016/j.biortech.2007.02.026Suche in Google Scholar
33. Silva, S. N. R. L., Farias, C. B. B., Rufino, R. D., Luna, J. M. and Sarubbo, L. A.: Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf., B79 (2010) 174–183. 10.1016/j.colsurfb.2010.03.050Suche in Google Scholar PubMed
34. Monteiro, S. A., Sassaki, G. L., DeSouza, L. M., Meira, J. A., DeAraújo, J. M., Mitchell, D. A., Ramos, L. P., and Krieger, N.: Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem. Phys. Lipids147 (2007) 1–13. 10.1016/j.chemphyslip.2007.02.001Suche in Google Scholar PubMed
35. Hauser, G. and Karnovsky, M. L.: Rhamnose and rhamnolipid biosynthesis by Pseudomonas aeruginosa. J. Biol. Chem.224 (1957) 91–105.Suche in Google Scholar
© 2011, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Editorial
- Rückblick auf zwei erfolgreiche Jahre 2009/2010
- Application
- Surface Activity and Adsorption Properties of New Perfluorinated Carbohydrate Surfactants
- Novel Surfactants
- Study of Glycerol Residue as a Carbon Source for Production of Rhamnolipids by Pseudomonas aeruginosa (ATCC 10145)
- Study of CLSI-M44-A Disk Diffusion Method for Determining the Susceptibility of Candida Species against Novel Complexes Derived from Copper Stearate with 2-Amino Benzothiazoles
- European Detergents Conference
- Bicontinuous Microemulsion as Reaction Medium for ω-Transaminase Catalysed Biotransformations
- Physical Chemistry
- SAXS Study on Azithromycin Loaded Nonionic Microemulsions
- Effects of Alkaline Cations on Self-assembly of Cetylpyridinium Surfactants
- Influence of Surfactants on Release of Chlorhexidine from Hydrogels
- Environmental Chemistry
- Influence of Surfactants on the Performance of Calcium Phosphate Scale Inhibitors
- Technical Chemistry
- Preparation and Characterization of a Phosphorous Free and Non-Nitrogen Antiscalant in Industrial Cooling Systems
- Preparation and Characterization of Pillared Derivatives from δ-Layered Sodium Disilicate and their Tribological Properties in Liquid Paraffin
- Synthesis
- An Efficient and Mild Procedure for the Preparation of Aldonic Acids via Oxidation of D-Sucrose by Employing N-Bromophthalimide Oxidant and Micellar System
- Synthesis and Properties of Some N-Acylethylenediamine Triacetic Acid Chelating Surfactants
- Conference and Meeting Report
- Sixth European Detergents Conference Report
- GDCh-Intensive Course Surfactants: Detergents, Cosmetics, Technical Applications
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Editorial
- Rückblick auf zwei erfolgreiche Jahre 2009/2010
- Application
- Surface Activity and Adsorption Properties of New Perfluorinated Carbohydrate Surfactants
- Novel Surfactants
- Study of Glycerol Residue as a Carbon Source for Production of Rhamnolipids by Pseudomonas aeruginosa (ATCC 10145)
- Study of CLSI-M44-A Disk Diffusion Method for Determining the Susceptibility of Candida Species against Novel Complexes Derived from Copper Stearate with 2-Amino Benzothiazoles
- European Detergents Conference
- Bicontinuous Microemulsion as Reaction Medium for ω-Transaminase Catalysed Biotransformations
- Physical Chemistry
- SAXS Study on Azithromycin Loaded Nonionic Microemulsions
- Effects of Alkaline Cations on Self-assembly of Cetylpyridinium Surfactants
- Influence of Surfactants on Release of Chlorhexidine from Hydrogels
- Environmental Chemistry
- Influence of Surfactants on the Performance of Calcium Phosphate Scale Inhibitors
- Technical Chemistry
- Preparation and Characterization of a Phosphorous Free and Non-Nitrogen Antiscalant in Industrial Cooling Systems
- Preparation and Characterization of Pillared Derivatives from δ-Layered Sodium Disilicate and their Tribological Properties in Liquid Paraffin
- Synthesis
- An Efficient and Mild Procedure for the Preparation of Aldonic Acids via Oxidation of D-Sucrose by Employing N-Bromophthalimide Oxidant and Micellar System
- Synthesis and Properties of Some N-Acylethylenediamine Triacetic Acid Chelating Surfactants
- Conference and Meeting Report
- Sixth European Detergents Conference Report
- GDCh-Intensive Course Surfactants: Detergents, Cosmetics, Technical Applications