Abstract
In the commercialisation of photocatalytic air purifiers, the performance as well as the cost of the catalytic material plays an important role. Where most comparative studies only regard the photocatalytic activity as a decisive parameter, in this study both activity and cost are taken into account. Using a cost-effectiveness analysis, six different commercially available TiO2-based catalysts are evaluated in terms of their activities in photocatalytic degradation of acetaldehyde as a model reaction for indoor air purification.
[1] Batterman, S., Godwin, C., & Jia, C. R. (2005). Long duration tests of room air filters in cigarette smokers’ homes. Environmental Science & Technology, 39, 7260–7268. DOI: 10.1021/es048951q. http://dx.doi.org/10.1021/es048951q10.1021/es048951qSuche in Google Scholar
[2] Bekö, G., Clausen, G., & Weschler, C. J. (2008). Sensory pollution from bag filters, carbon filters and combinations. Indoor Air, 18, 27–36. DOI: 10.1111/j.1600-0668.2007.00501.x. http://dx.doi.org/10.1111/j.1600-0668.2007.00501.x10.1111/j.1600-0668.2007.00501.xSuche in Google Scholar
[3] Bennett, A. (2009). Strategies and technologies: Controlling indoor air quality. Filtration & Separation, 46, 14–17. DOI: 10.1016/s0015-1882(09)70155-7. http://dx.doi.org/10.1016/S0015-1882(09)70155-710.1016/S0015-1882(09)70155-7Suche in Google Scholar
[4] Bianchi, C. L., Gatto, S., Pirola, C., Naldoni, A., Di Michele, A., Cerrato, G., Crocellà, V., & Capucci, V. (2014). Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: Comparison between nano and micro-sized TiO2. Applied Catalysis B: Environmental, 146, 123–130. DOI: 10.1016/j.apcatb.2013.02.047. http://dx.doi.org/10.1016/j.apcatb.2013.02.04710.1016/j.apcatb.2013.02.047Suche in Google Scholar
[5] Birnie, M., Riffat, S., & Gillott, M. (2006). Photocatalytic reactors: design for effective air purification. International Journal of Low-Carbon Technologies, 1, 47–58. DOI: 10.1093/ijlct/1.1.47. http://dx.doi.org/10.1093/ijlct/1.1.4710.1093/ijlct/1.1.47Suche in Google Scholar
[6] Black, W. C. (1990). The CE plane: A graphic representation of cost-effectiveness. Medical Decision Making, 10, 212–214. DOI: 10.1177/0272989x9001000308. http://dx.doi.org/10.1177/0272989X900100030810.1177/0272989X9001000308Suche in Google Scholar
[7] Boardman, A. E., Greenberg, D. H., Vining, A. R., & Weimer, D. L. (2006). Cost-benefit analysis: concepts and practice (3rd ed.). New Jersey, NJ, USA: Pearson Education. Suche in Google Scholar
[8] Briggs, A., & Fenn, P. (1998). Confidence intervals or surfaces? Uncertainty on the cost-effectiveness plane. Health Economics, 7, 723–740. DOI: 10.1002/(sici)1099-1050(199812)7:8〈723::aid-hec392〉3.0.co;2-o. http://dx.doi.org/10.1002/(SICI)1099-1050(199812)7:8<723::AID-HEC392>3.0.CO;2-O10.1002/(SICI)1099-1050(199812)7:8<723::AID-HEC392>3.0.CO;2-OSuche in Google Scholar
[9] Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32, 33–177. DOI: 10.1016/j.progsolidstchem.2004.08.001. http://dx.doi.org/10.1016/j.progsolidstchem.2004.08.00110.1016/j.progsolidstchem.2004.08.001Suche in Google Scholar
[10] Compernolle, T., Van Passel, S., Weyens, N., Vangronsveld, J., Lebbe, L., & Thewys, T. (2012). Groundwater remediation and the cost effectiveness of phytoremediation. International Journal of Phytoremediation, 14, 861–877. DOI: 10.1080/15226514.2011.628879. http://dx.doi.org/10.1080/15226514.2011.62887910.1080/15226514.2011.628879Suche in Google Scholar
[11] Doudrick, K., Monzón, O., Mangonon, A., Hristovski, K., & Westerhoff, P. (2012). Nitrate reduction in water using com mercial titanium dioxide photocatalysts (P25, P90 and hombikat UV100). Journal of Environmental Engineering, 138, 852–861. DOI: 10.1061/(asce)ee.1943-7870.0000529. 10.1061/(ASCE)EE.1943-7870.0000529Suche in Google Scholar
[12] Fujishima, A., & Zhang, X. T. (2006). Titanium dioxide photocatalysis: Present situation and future approaches. Comptes Rendus Chimie, 9, 750–760. DOI: 10.1016/j.crci.2005.02.055. http://dx.doi.org/10.1016/j.crci.2005.02.05510.1016/j.crci.2005.02.055Suche in Google Scholar
[13] Hansen, W. J., Orth, K. D., & Robinson, R. K. (1998). Cost effectiveness and incremental cost analyses: Alternative to benefit-cost analysis for environmental remediation projects. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management, 2, 8–12. DOI: 10.1061/(asce)1090-025x(1998)2:1(8). http://dx.doi.org/10.1061/(ASCE)1090-025X(1998)2:1(8)10.1061/(ASCE)1090-025X(1998)2:1(8)Suche in Google Scholar
[14] Jammaer, J., Aprile, C., Verbruggen, S. W., Lenaerts, S., Pescarmona, P. P., & Martens, J. A. (2011). A non-aqueous synthesis of TiO2/SiO2 composites in supercritical CO2 for the photodegradation of pollutants. ChemSusChem, 4, 1457–1463. DOI: 10.1002/cssc.201100059. http://dx.doi.org/10.1002/cssc.20110005910.1002/cssc.201100059Suche in Google Scholar
[15] Kwong, C.W., Chao, C. Y. H., Hui, K. S., & Wan, M. P. (2008). Removal of VOCs from indoor environment by ozonation over different porous materials. Atmospheric Environment, 42, 2300–2311. DOI: 10.1016/j.atmosenv.2007.12.030. http://dx.doi.org/10.1016/j.atmosenv.2007.12.03010.1016/j.atmosenv.2007.12.030Suche in Google Scholar
[16] Löthgren, M., & Zethraeus, N. (2000). Definition, interpretation and calculation of cost-effectiveness acceptability curves. Health Economics, 9, 623–630. DOI: 10.1002/1099-1050(200010)9:7〈623::aid-hec539〉3.0.co;2-v. http://dx.doi.org/10.1002/1099-1050(200010)9:7<623::AID-HEC539>3.0.CO;2-V10.1002/1099-1050(200010)9:7<623::AID-HEC539>3.0.CO;2-VSuche in Google Scholar
[17] Mo, J. H., Zhang, Y. P., Xu, Q. J., Lamson, J. J., & Zhao, R. Z. (2009). Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environment, 43, 2229–2246. DOI: 10.1016/j.atmosenv.2009.01.034. http://dx.doi.org/10.1016/j.atmosenv.2009.01.03410.1016/j.atmosenv.2009.01.034Suche in Google Scholar
[18] Ohtani, B., Prieto-Mahaney, O. O., Li, D., & Abe, R. (2010). What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry, 216, 179–182. DOI: 10.1016/j.jphotochem.2010.07.024. http://dx.doi.org/10.1016/j.jphotochem.2010.07.02410.1016/j.jphotochem.2010.07.024Suche in Google Scholar
[19] Saha, S., Wang, J. M., & Pal, A. (2012). Nano silver impregnation on commercial TiO2 and a comparative photocatalytic account to degrade malachite green. Separation and Purification Technology, 89, 147–159. DOI: 10.1016/j.seppur.2012.01.012. http://dx.doi.org/10.1016/j.seppur.2012.01.01210.1016/j.seppur.2012.01.012Suche in Google Scholar
[20] Sopyan, I., Watanabe, M., Murasawa, S., Hashimoto, K., & Fujishima, A. (1996). An efficient TiO2 thin-film photocatalyst: Photocatalytic properties in gas-phase acetaldehyde degradation. Journal of Photochemistry and Photobiology A: Chemistry, 98, 79–86. DOI: 10.1016/1010-6030(96)04328-6. http://dx.doi.org/10.1016/1010-6030(96)04328-610.1016/1010-6030(96)04328-6Suche in Google Scholar
[21] Sopyan, I. (2007). Kinetic analysis on photocatalytic degradation of gaseous acetaldehyde, ammonia and hydrogen sulfide on nanosized porous TiO2 films. Science and Technology of Advanced Materials, 8, 33–39. DOI: 10.1016/j.stam.2006.10.004. http://dx.doi.org/10.1016/j.stam.2006.10.00410.1016/j.stam.2006.10.004Suche in Google Scholar
[22] Su, R., Bechstein, R., S, Esbjörnsson, B., Palmqvist, A., & Besenbacher, F. (2011). How the anatase-to-rutile ratio influences the photoreactivity of TiO2. The Journal of Physical Chemistry C, 115, 24287–24292. DOI: 10.1021/jp2086768. http://dx.doi.org/10.1021/jp208676810.1021/jp2086768Suche in Google Scholar
[23] Tytgat, T., Hauchecorne, B., Smits, M., Verbruggen, S. W., & Lenaerts, S. (2012). Concept and validation of a fully automated photocatalytic test setup. Journal of Laboratory Automation, 17, 134–143. DOI: 10.1177/2211068211424554. 10.1177/2211068211424554Suche in Google Scholar
[24] Van Durme, J., Dewulf, J., Sysmans, W., Leys, C., & Van Langenhove, H. (2007). Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Applied Catalysis B: Environmental, 74, 161–169. DOI: 10.1016/j.apcatb.2007.02.006. http://dx.doi.org/10.1016/j.apcatb.2007.02.00610.1016/j.apcatb.2007.02.006Suche in Google Scholar
[25] Van Wesenbeeck, K., Hauchecorne, B., & Lenaerts, S. (2013). Integration of a photocatalytic coating in a corona discharge unit for plasma assisted catalysis. Journal of Environmental Solutions, 2, 16–24. Suche in Google Scholar
[26] Verbruggen, S. W., Ribbens, S., Tytgat, T., Hauchecorne, B., Smits, M., Meynen, V., Cool, P., Martens, J. A., & Lenaerts, S. (2011). The benefit of glass bead supports for efficient gas phase photocatalysis: Case study of a commercial and a synthesised photocatalyst. Chemical Engineering Journal, 174, 318–325. DOI: 10.1016/j.cej.2011.09.038. http://dx.doi.org/10.1016/j.cej.2011.09.03810.1016/j.cej.2011.09.038Suche in Google Scholar
[27] Verbruggen, S. W., Masschaele, K., Moortgat, E., Korany, T. E., Hauchecorne, B., Martens, J. A., & Lenaerts, S. (2012). Factors driving the activity of commercial titanium dioxide powders towards gas phase photocatalytic oxidation of acetaldehyde. Catalysis Science & Technology, 2, 2311–2318. DOI: 10.1039/c2cy20123b. http://dx.doi.org/10.1039/c2cy20123b10.1039/c2cy20123bSuche in Google Scholar
[28] Xu, J. H., & Shiraishi, F. (1999). Photocatalytic decomposition of acetaldehyde in air over titanium dioxide. Journal of Chemical Technology & Biotechnology, 74, 1096–1100. DOI: 10.1002/(sici)1097-4660(199911)74:11〈1096::aidjctb145〉3.0.co;2-v. http://dx.doi.org/10.1002/(SICI)1097-4660(199911)74:11<1096::AID-JCTB145>3.0.CO;2-V10.1002/(SICI)1097-4660(199911)74:11<1096::AID-JCTB145>3.0.CO;2-VSuche in Google Scholar
[29] Yu, Q. L., Ballari, M. M., & Brouwers, H. J. H. (2011). Heterogeneous photocatalysis applied to indoor building material: Towards an improved indoor air quality. Advanced Materials Research, 255–260, 2836–2840. DOI: 10.4028/www.scientific.net/amr.255-260.2836. http://dx.doi.org/10.4028/www.scientific.net/AMR.255-260.283610.4028/www.scientific.net/AMR.255-260.2836Suche in Google Scholar
[30] Zhang, Y. P., Yang, R., & Zhao, R. Z. (2003). A model for analyzing the performance of photocatalytic air cleaner in removing volatile organic compounds. Atmospheric Environment, 37, 3395–3399. DOI: 10.1016/s1352-2310(03)00357-1. http://dx.doi.org/10.1016/S1352-2310(03)00357-110.1016/S1352-2310(03)00357-1Suche in Google Scholar
[31] Zhang, Y. P., Mo, J. H., Li, Y. G., Sundell, J., Wargocki, P., Zhang, J. S., Little, J. C., Corsi, R., Deng, Q. H., & Leung, M. H. K. (2011). Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review. Atmospheric Environment, 45, 4329–4343. DOI: 10.1016/j.atmosenv.2011.05.041. http://dx.doi.org/10.1016/j.atmosenv.2011.05.04110.1016/j.atmosenv.2011.05.041Suche in Google Scholar
© 2014 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Environmental catalysis — Topical issue
- Structured catalysts for methanol-to-olefins conversion: a review
- Diesel soot combustion catalysts: review of active phases
- State of the art in catalytic oxidation of chlorinated volatile organic compounds
- Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins
- Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation
- Valorisation of bio-oil resulting from fast pyrolysis of wood
- Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x MnxO in cellulose conversion
- Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process
- Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity
- Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)
- Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode
- CdS/TiO2 composite films for methylene blue photodecomposition under visible light irradiation and non-photocorrosion of cadmium sulfide
- Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate
- Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air
- Solid waste decontamination by thermal desorption and catalytic oxidation methods
Artikel in diesem Heft
- Environmental catalysis — Topical issue
- Structured catalysts for methanol-to-olefins conversion: a review
- Diesel soot combustion catalysts: review of active phases
- State of the art in catalytic oxidation of chlorinated volatile organic compounds
- Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins
- Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation
- Valorisation of bio-oil resulting from fast pyrolysis of wood
- Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x MnxO in cellulose conversion
- Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process
- Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity
- Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)
- Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode
- CdS/TiO2 composite films for methylene blue photodecomposition under visible light irradiation and non-photocorrosion of cadmium sulfide
- Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate
- Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air
- Solid waste decontamination by thermal desorption and catalytic oxidation methods