Abstract
Sulphate- and phosphate-loaded silicas were synthesised using the sol-gel method with different sulphate and phosphate loadings. These catalysts were characterised using Fourier transform infrared spectroscopy (FT-IR), the Brunauer-Emmett-Teller (BET) method and X-ray photoelectron spectroscopy (XPS). Acidity was measured using the temperature-programmed desorption of ammonia (TPD-NH3) method. The results showed that glycerol esterification with acetic acid conversion decreased as follows: α(H2SO4) (100 %) > α(H3PO4) (99 %) > α(silica loaded with 20 % sulphuric acid) (SS-20; 98 %) > α(silica loaded with 20 % phosphoric acid) (PS-20; 83 %). These studies suggest that the solid acid catalytic activity in the esterification of glycerol is highly dependent on catalyst acidity strength, pore size and surface area.
[1] Adam, F., Batagarawa, M. S., Hello, K. M., & Al-Juaid, S. S. (2012). One-step synthesis of solid sulfonic acid catalyst and its application in the acetalization of glycerol: crystal structure of cis-5-hydroxy-2-phenyl-1,3-dioxane trimer. Chemical Papers, 66, 1048–1058. DOI: 10.2478/s11696-012-0203-x. http://dx.doi.org/10.2478/s11696-012-0203-x10.2478/s11696-012-0203-xSuche in Google Scholar
[2] Aelion, R., Loebel, A., & Eirich, F. (1950). The hydrolysis and polycondensation of tetra alkoxysilanes. Recueil des Travaux Chimiques des Pays-Bas, 69, 61–75. DOI: 10.1002/recl.19500690109. http://dx.doi.org/10.1002/recl.1950069010910.1002/recl.19500690109Suche in Google Scholar
[3] Alton Edward Bailey, D. S., Swern, D., Formo, M.W., & Applewhite, T. H. (1979). Bailey’s industrial oil and fat products. New York, NY, USA: Wiley. DOI: 10.1002/047167849x. 10.1002/047167849XSuche in Google Scholar
[4] Behr, A., Eilting, J., Irawadi, K., Leschinski, J., & Lindner, F. (2007). Improved utilisation of renewable resources: New important derivatives of glycerol. Green Chemistry, 10, 13–30. DOI: 10.1039/b710561d. http://dx.doi.org/10.1039/b710561d10.1039/B710561DSuche in Google Scholar
[5] Casas, A., Ramos, M. J., Pérez, Á., Simón, A., Lucas-Torres, C., & Moreno, A. (2012). Rapid quantitative determination by 13C NMR of the composition of acetylglycerol mixtures as byproduct in biodiesel synthesis. Fuel, 92, 180–186. DOI: 10.1016/j.fuel.2011.06.061. http://dx.doi.org/10.1016/j.fuel.2011.06.06110.1016/j.fuel.2011.06.061Suche in Google Scholar
[6] Chimienti, M. E., Pizzio, L. R., Cáceres, C. V., & Blanco, M. N. (2001). Tungstophosphoric and tungstosilicic acids on carbon as acidic catalysts. Applied Catalysis A: General, 208, 7–19. DOI: 10.1016/s0926-860x(00)00702-x. http://dx.doi.org/10.1016/S0926-860X(00)00702-X10.1016/S0926-860X(00)00702-XSuche in Google Scholar
[7] Corma, A., Fornés, V., Juan-Rajadell, M. I., & Nieto, J. M. L. (1994). Influence of preparation conditions on the structure and catalytic properties of SO 42−/ZrO2 superacid catalysts. Applied Catalysis A: General, 116, 151–163. DOI: 10.1016/0926-860x(94)80286-6. http://dx.doi.org/10.1016/0926-860X(94)80286-610.1016/0926-860X(94)80286-6Suche in Google Scholar
[8] Dosuna-Rodríguez, I., Adriany, C., & Gaigneaux, E. M. (2011). Glycerol acetylation on sulphated zirconia in mild conditions. Catalysis Today, 167, 56–63. DOI: 10.1016/j.cattod.2010.11.057. http://dx.doi.org/10.1016/j.cattod.2010.11.05710.1016/j.cattod.2010.11.057Suche in Google Scholar
[9] Dutta, S. N., Dowerah, D., & Frost, D. C. (1983). Study of sulphur in Assam coals by X-ray photoelectron spectroscopy. Fuel, 62, 840–841. DOI: 10.1016/0016-2361(83)90038-8. http://dx.doi.org/10.1016/0016-2361(83)90038-810.1016/0016-2361(83)90038-8Suche in Google Scholar
[10] Ferreira, P., Fonseca, I. M., Ramos, A. M., Vital, J., & Castanheiro, J. E. (2009a). Glycerol acetylation over dodecatungstophosphoric acid immobilized into a silica matrix as catalyst. Applied Catalysis B: Environmental, 91, 416–422. DOI: 10.1016/j.apcatb.2009.06.009. http://dx.doi.org/10.1016/j.apcatb.2009.06.00910.1016/j.apcatb.2009.06.009Suche in Google Scholar
[11] Ferreira, P., Fonseca, I. M., Ramos, A. M., Vital, J., & Castanheiro, J. E. (2009b). Esterification of glycerol with acetic acid over dodecamolybdophosphoric acid encaged in USY zeolite. Catalysis Communications, 10, 481–484. DOI: 10.1016/j.catcom.2008.10.015. http://dx.doi.org/10.1016/j.catcom.2008.10.01510.1016/j.catcom.2008.10.015Suche in Google Scholar
[12] Ghaziaskar, H. S., Daneshfar, A., & Calvo, L. (2006). Continuous esterification or dehydration in supercritical carbon dioxide. Green Chemistry, 8, 576–581. DOI: 10.1039/b518463k. http://dx.doi.org/10.1039/b518463k10.1039/b518463kSuche in Google Scholar
[13] Gonçalves, V. L. C., Pinto, B. P., Silva, J. C., & Mota, C. J. A. (2008). Acetylation of glycerol catalyzed by different solid acids. Catalysis Today, 133–135, 673–677. DOI: 10.1016/j.cattod.2007.12.037. http://dx.doi.org/10.1016/j.cattod.2007.12.03710.1016/j.cattod.2007.12.037Suche in Google Scholar
[14] Gonçalves, C. E., Laier, L. O., & da Silva, M. J. (2011). Novel esterification of glycerol catalysed by tin chloride (II): A recyclable and less corrosive process for production of bio-additives. Catalysis Letters, 141, 1111–1117. DOI: 10.1007/s10562-011-0570-x. http://dx.doi.org/10.1007/s10562-011-0570-x10.1007/s10562-011-0570-xSuche in Google Scholar
[15] Hofmann, P. (1985). DE Patent No. 3512497. Munich, Germany: German Patent and Trade Mark Office. Suche in Google Scholar
[16] Izumi, Y., Hisano, K., & Hida, T. (1999). Acid catalysis of silicaincluded heteropolyacid in polar reaction media. Applied Catalysis A: General, 181, 277–282. DOI: 10.1016/s0926-860x(98)00399-8. http://dx.doi.org/10.1016/S0926-860X(98)00399-810.1016/S0926-860X(98)00399-8Suche in Google Scholar
[17] Johnson, D. T., & Taconi, K. A. (2007). The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production. Environmental Progress, 26, 338–348. DOI: 10.1002/ep.10225. http://dx.doi.org/10.1002/ep.1022510.1002/ep.10225Suche in Google Scholar
[18] Lal, S. N. D., O’Connor, C. J., & Eyres, L. (2006). Application of emulsifiers/stabilizers in dairy products of high rheology. Advances in Colloid and Interface Science, 123–126, 433–437. DOI: 10.1016/j.cis.2006.05.009. http://dx.doi.org/10.1016/j.cis.2006.05.00910.1016/j.cis.2006.05.009Suche in Google Scholar
[19] Liao, X. Y., Zhu, Y. L., Wang, S. G., & Li, Y. W. (2009). Producing triacetylglycerol with glycerol by two steps: Esterification and acetylation. Fuel Processing Technology, 90, 988–993. DOI: 10.1016/j.fuproc.2009.03.015. http://dx.doi.org/10.1016/j.fuproc.2009.03.01510.1016/j.fuproc.2009.03.015Suche in Google Scholar
[20] Lion, M., Maache, M., Lavalley, J. C., Ramis, G., Busca, G., Rossi, P. F., & Lorenzelli, V. (1990). FT-IR study of the Brønsted acidity of phosphated and sulphated silica catalysts. Journal of Molecular Structure, 218, 417–422. DOI: 10.1016/0022-2860(90)80303-2. http://dx.doi.org/10.1016/0022-2860(90)80303-210.1016/0022-2860(90)80303-2Suche in Google Scholar
[21] Lotero, E., Liu, Y. J., Lopez, D. E., Suwannakarn, K., Bruce, D. A., & Goodwin, J. G., Jr. (2005). Synthesis of biodiesel via acid catalysis. Industrial & Engineering Chemistry Research, 44, 5353–5363. DOI: 10.1021/ie049157g. http://dx.doi.org/10.1021/ie049157g10.1021/ie049157gSuche in Google Scholar
[22] Manríquez, M. E., López, T., Gomez, R., Picquart, M., & Hernández-Cortez, J. G. (2004). Sol-gel silica modified with phosphate and sulfate ions. Journal of Non-Crystalline Solids, 345–346, 643–646. DOI: 10.1016/j.jnoncrysol.2004.08.115. http://dx.doi.org/10.1016/j.jnoncrysol.2004.08.11510.1016/j.jnoncrysol.2004.08.115Suche in Google Scholar
[23] Melada, S., Ardizzone, S. A., & Bianchi, C. L. (2004). Sulphated zirconia by sol-gel route. The effects of the preparative variables. Microporous and Mesoporous Materials, 73, 203–209. DOI: 10.1016/j.micromeso.2004.05.014. http://dx.doi.org/10.1016/j.micromeso.2004.05.01410.1016/j.micromeso.2004.05.014Suche in Google Scholar
[24] Melero, J. A., Iglesias, J., & Morales, G. (2009). Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chemistry, 11, 1285–1308. DOI: 10.1039/b902086a. http://dx.doi.org/10.1039/b902086a10.1039/b902086aSuche in Google Scholar
[25] Melero, J. A., Bautista, L. F., Morales, G., Iglesias, J., & Sánchez-Vázquez, R. (2010). Biodiesel production from crude palm oil using sulfonic acid-modified mesostructured catalysts. Chemical Engineering Journal, 161, 323–331. DOI: 10.1016/j.cej.2009.12.037. http://dx.doi.org/10.1016/j.cej.2009.12.03710.1016/j.cej.2009.12.037Suche in Google Scholar
[26] Mukai, S. R., Sugiyama, T., & Tamon, H. (2003). Immobilization of heteropoly acids in the network structure of carbon gels. Applied Catalysis A: General, 256, 99–105. DOI: 10.1016/s0926-860x(03)00391-0. http://dx.doi.org/10.1016/S0926-860X(03)00391-010.1016/S0926-860X(03)00391-0Suche in Google Scholar
[27] Nabeshima, K. I. (1995). JP Patent No. 276787. Tokyo, Japan: Japan Patent Office. Suche in Google Scholar
[28] Nebel, B., Mittelbach, M., & Uray, G. (2008). Determination of the composition of acetylglycerol mixtures by 1H NMR followed by GC investigation. Analytical Chemistry, 80, 8712–8716. DOI: 10.1021/ac800706s. http://dx.doi.org/10.1021/ac800706s10.1021/ac800706sSuche in Google Scholar
[29] Nomura, T. H. (1995). JP Patent No. 203429. Tokyo, Japan: Japan Patent Office. Suche in Google Scholar
[30] Petchmala, A., Laosiripojana, N., Jongsomjit, B., Goto, M., Panpranot, J., Mekasuwandumrong, O., & Shotipruk, A. (2010). Transesterification of palm oil and esterification of palm fatty acid in near- and super-critical methanol with SO4-ZrO2 catalysts. Fuel, 89, 2387–2392. DOI: 10.1016/j. fuel.2010.04.010. http://dx.doi.org/10.1016/j.fuel.2010.04.01010.1016/j.fuel.2010.04.010Suche in Google Scholar
[31] Reddy, P. S., Sudarsanam, P., Raju, G., & Reddy, B. M. (2010). Synthesis of bio-additives: Acetylation of glycerol over zirconia-based solid acid catalysts. Catalysis Communications, 11, 1224–1228. DOI: 10.1016/j.catcom.2010.07.006. http://dx.doi.org/10.1016/j.catcom.2010.07.00610.1016/j.catcom.2010.07.006Suche in Google Scholar
[32] Samantaray, S. K., & Parida, K. (2001). Effect of phosphate ion on the textural and catalytic activity of titania-silica mixed oxide. Applied Catalysis A: General, 220, 9–20. DOI: 10.1016/s0926-860x(01)00638-x. http://dx.doi.org/10.1016/S0926-860X(01)00638-X10.1016/S0926-860X(01)00638-XSuche in Google Scholar
[33] Scherer, G. W. (1988). Aging and drying of gels. Journal of Non-Crystalline Solids, 100, 77–92. DOI: 10.1016/0022-3093(88)90008-7. http://dx.doi.org/10.1016/0022-3093(88)90008-710.1016/0022-3093(88)90008-7Suche in Google Scholar
[34] Splinter, S. J., Rofagha, R., McIntyre, N. S., & Erb, U. (1996). XPS characterization of the corrosion films formed on nanocrystalline Ni-P alloys in sulphuric acid. Surface and Interface Analysis, 24, 181–186. DOI: 10.1002/(sici)1096-9918(199603)24:3〈181::aid-sia92〉3.0.co;2-n. http://dx.doi.org/10.1002/(SICI)1096-9918(199603)24:3<181::AID-SIA92>3.0.CO;2-N10.1002/(SICI)1096-9918(199603)24:3<181::AID-SIA92>3.0.CO;2-NSuche in Google Scholar
[35] Sunajadevi, K., & Sugunan, S. (2004). Synthesis, characterization and benzylation activity of nanocrystalline chromia loaded sulfated titania prepared via sol-gel route. Catalysis Communications, 5, 575–581. DOI: 10.1016/j.catcom.2004.07.006. http://dx.doi.org/10.1016/j.catcom.2004.07.00610.1016/j.catcom.2004.07.006Suche in Google Scholar
[36] Taguchi, A. O., Ikeda, Y., Fujita, K., & Masuda, T. (2000). JP Patent No. 298099. Tokyo, Japan: Japan Patent Office. Suche in Google Scholar
[37] Tuzen, M., Soylak, M., Citak, D., Ferreira, H. S., Korn, M. G. A., & Bezerra, M. A. (2009). A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry. Journal of Hazardous Materials, 162, 1041–1045. DOI: 10.1016/j.jhazmat.2008.05.154. http://dx.doi.org/10.1016/j.jhazmat.2008.05.15410.1016/j.jhazmat.2008.05.154Suche in Google Scholar
[38] Watanabe, T., Sugiura, M., Sato, M., Yamada, N., & Nakanishi, K. (2005). Diacylglycerol production in a packed bed bioreactor. Process Biochemistry, 40, 637–643. DOI: 10.1016/j.procbio.2004.01.046. http://dx.doi.org/10.1016/j.procbio.2004.01.04610.1016/j.procbio.2004.01.046Suche in Google Scholar
[39] Zhou, C. H., Beltramini, J. N., Fan, Y. X., & Lu, G. Q. (2008). Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chemical Society Reviews, 37, 527–549. DOI: 10.1039/b707343g. http://dx.doi.org/10.1039/b707343g10.1039/B707343GSuche in Google Scholar
[40] Zhuang, Q., & Miller, J. M. (2001). One-pot sol-gel synthesis of sulfated ZrO2-SiO2 catalysts for alcohol dehydration. Canadian Journal of Chemistry, 79, 1220–1223. DOI: 10.1139/v01-109. http://dx.doi.org/10.1139/v01-10910.1139/v01-109Suche in Google Scholar
© 2014 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Environmental catalysis — Topical issue
- Structured catalysts for methanol-to-olefins conversion: a review
- Diesel soot combustion catalysts: review of active phases
- State of the art in catalytic oxidation of chlorinated volatile organic compounds
- Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins
- Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation
- Valorisation of bio-oil resulting from fast pyrolysis of wood
- Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x MnxO in cellulose conversion
- Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process
- Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity
- Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)
- Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode
- CdS/TiO2 composite films for methylene blue photodecomposition under visible light irradiation and non-photocorrosion of cadmium sulfide
- Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate
- Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air
- Solid waste decontamination by thermal desorption and catalytic oxidation methods
Artikel in diesem Heft
- Environmental catalysis — Topical issue
- Structured catalysts for methanol-to-olefins conversion: a review
- Diesel soot combustion catalysts: review of active phases
- State of the art in catalytic oxidation of chlorinated volatile organic compounds
- Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins
- Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation
- Valorisation of bio-oil resulting from fast pyrolysis of wood
- Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x MnxO in cellulose conversion
- Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process
- Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity
- Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)
- Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode
- CdS/TiO2 composite films for methylene blue photodecomposition under visible light irradiation and non-photocorrosion of cadmium sulfide
- Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate
- Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air
- Solid waste decontamination by thermal desorption and catalytic oxidation methods