Startseite Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation

  • Khadijeh Ghoreishi EMAIL logo , Nilofar Asim , Mohd Yarmo und Mohd Samsudin
Veröffentlicht/Copyright: 23. Mai 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Sulphate- and phosphate-loaded silicas were synthesised using the sol-gel method with different sulphate and phosphate loadings. These catalysts were characterised using Fourier transform infrared spectroscopy (FT-IR), the Brunauer-Emmett-Teller (BET) method and X-ray photoelectron spectroscopy (XPS). Acidity was measured using the temperature-programmed desorption of ammonia (TPD-NH3) method. The results showed that glycerol esterification with acetic acid conversion decreased as follows: α(H2SO4) (100 %) > α(H3PO4) (99 %) > α(silica loaded with 20 % sulphuric acid) (SS-20; 98 %) > α(silica loaded with 20 % phosphoric acid) (PS-20; 83 %). These studies suggest that the solid acid catalytic activity in the esterification of glycerol is highly dependent on catalyst acidity strength, pore size and surface area.

[1] Adam, F., Batagarawa, M. S., Hello, K. M., & Al-Juaid, S. S. (2012). One-step synthesis of solid sulfonic acid catalyst and its application in the acetalization of glycerol: crystal structure of cis-5-hydroxy-2-phenyl-1,3-dioxane trimer. Chemical Papers, 66, 1048–1058. DOI: 10.2478/s11696-012-0203-x. http://dx.doi.org/10.2478/s11696-012-0203-x10.2478/s11696-012-0203-xSuche in Google Scholar

[2] Aelion, R., Loebel, A., & Eirich, F. (1950). The hydrolysis and polycondensation of tetra alkoxysilanes. Recueil des Travaux Chimiques des Pays-Bas, 69, 61–75. DOI: 10.1002/recl.19500690109. http://dx.doi.org/10.1002/recl.1950069010910.1002/recl.19500690109Suche in Google Scholar

[3] Alton Edward Bailey, D. S., Swern, D., Formo, M.W., & Applewhite, T. H. (1979). Bailey’s industrial oil and fat products. New York, NY, USA: Wiley. DOI: 10.1002/047167849x. 10.1002/047167849XSuche in Google Scholar

[4] Behr, A., Eilting, J., Irawadi, K., Leschinski, J., & Lindner, F. (2007). Improved utilisation of renewable resources: New important derivatives of glycerol. Green Chemistry, 10, 13–30. DOI: 10.1039/b710561d. http://dx.doi.org/10.1039/b710561d10.1039/B710561DSuche in Google Scholar

[5] Casas, A., Ramos, M. J., Pérez, Á., Simón, A., Lucas-Torres, C., & Moreno, A. (2012). Rapid quantitative determination by 13C NMR of the composition of acetylglycerol mixtures as byproduct in biodiesel synthesis. Fuel, 92, 180–186. DOI: 10.1016/j.fuel.2011.06.061. http://dx.doi.org/10.1016/j.fuel.2011.06.06110.1016/j.fuel.2011.06.061Suche in Google Scholar

[6] Chimienti, M. E., Pizzio, L. R., Cáceres, C. V., & Blanco, M. N. (2001). Tungstophosphoric and tungstosilicic acids on carbon as acidic catalysts. Applied Catalysis A: General, 208, 7–19. DOI: 10.1016/s0926-860x(00)00702-x. http://dx.doi.org/10.1016/S0926-860X(00)00702-X10.1016/S0926-860X(00)00702-XSuche in Google Scholar

[7] Corma, A., Fornés, V., Juan-Rajadell, M. I., & Nieto, J. M. L. (1994). Influence of preparation conditions on the structure and catalytic properties of SO 42−/ZrO2 superacid catalysts. Applied Catalysis A: General, 116, 151–163. DOI: 10.1016/0926-860x(94)80286-6. http://dx.doi.org/10.1016/0926-860X(94)80286-610.1016/0926-860X(94)80286-6Suche in Google Scholar

[8] Dosuna-Rodríguez, I., Adriany, C., & Gaigneaux, E. M. (2011). Glycerol acetylation on sulphated zirconia in mild conditions. Catalysis Today, 167, 56–63. DOI: 10.1016/j.cattod.2010.11.057. http://dx.doi.org/10.1016/j.cattod.2010.11.05710.1016/j.cattod.2010.11.057Suche in Google Scholar

[9] Dutta, S. N., Dowerah, D., & Frost, D. C. (1983). Study of sulphur in Assam coals by X-ray photoelectron spectroscopy. Fuel, 62, 840–841. DOI: 10.1016/0016-2361(83)90038-8. http://dx.doi.org/10.1016/0016-2361(83)90038-810.1016/0016-2361(83)90038-8Suche in Google Scholar

[10] Ferreira, P., Fonseca, I. M., Ramos, A. M., Vital, J., & Castanheiro, J. E. (2009a). Glycerol acetylation over dodecatungstophosphoric acid immobilized into a silica matrix as catalyst. Applied Catalysis B: Environmental, 91, 416–422. DOI: 10.1016/j.apcatb.2009.06.009. http://dx.doi.org/10.1016/j.apcatb.2009.06.00910.1016/j.apcatb.2009.06.009Suche in Google Scholar

[11] Ferreira, P., Fonseca, I. M., Ramos, A. M., Vital, J., & Castanheiro, J. E. (2009b). Esterification of glycerol with acetic acid over dodecamolybdophosphoric acid encaged in USY zeolite. Catalysis Communications, 10, 481–484. DOI: 10.1016/j.catcom.2008.10.015. http://dx.doi.org/10.1016/j.catcom.2008.10.01510.1016/j.catcom.2008.10.015Suche in Google Scholar

[12] Ghaziaskar, H. S., Daneshfar, A., & Calvo, L. (2006). Continuous esterification or dehydration in supercritical carbon dioxide. Green Chemistry, 8, 576–581. DOI: 10.1039/b518463k. http://dx.doi.org/10.1039/b518463k10.1039/b518463kSuche in Google Scholar

[13] Gonçalves, V. L. C., Pinto, B. P., Silva, J. C., & Mota, C. J. A. (2008). Acetylation of glycerol catalyzed by different solid acids. Catalysis Today, 133–135, 673–677. DOI: 10.1016/j.cattod.2007.12.037. http://dx.doi.org/10.1016/j.cattod.2007.12.03710.1016/j.cattod.2007.12.037Suche in Google Scholar

[14] Gonçalves, C. E., Laier, L. O., & da Silva, M. J. (2011). Novel esterification of glycerol catalysed by tin chloride (II): A recyclable and less corrosive process for production of bio-additives. Catalysis Letters, 141, 1111–1117. DOI: 10.1007/s10562-011-0570-x. http://dx.doi.org/10.1007/s10562-011-0570-x10.1007/s10562-011-0570-xSuche in Google Scholar

[15] Hofmann, P. (1985). DE Patent No. 3512497. Munich, Germany: German Patent and Trade Mark Office. Suche in Google Scholar

[16] Izumi, Y., Hisano, K., & Hida, T. (1999). Acid catalysis of silicaincluded heteropolyacid in polar reaction media. Applied Catalysis A: General, 181, 277–282. DOI: 10.1016/s0926-860x(98)00399-8. http://dx.doi.org/10.1016/S0926-860X(98)00399-810.1016/S0926-860X(98)00399-8Suche in Google Scholar

[17] Johnson, D. T., & Taconi, K. A. (2007). The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production. Environmental Progress, 26, 338–348. DOI: 10.1002/ep.10225. http://dx.doi.org/10.1002/ep.1022510.1002/ep.10225Suche in Google Scholar

[18] Lal, S. N. D., O’Connor, C. J., & Eyres, L. (2006). Application of emulsifiers/stabilizers in dairy products of high rheology. Advances in Colloid and Interface Science, 123–126, 433–437. DOI: 10.1016/j.cis.2006.05.009. http://dx.doi.org/10.1016/j.cis.2006.05.00910.1016/j.cis.2006.05.009Suche in Google Scholar

[19] Liao, X. Y., Zhu, Y. L., Wang, S. G., & Li, Y. W. (2009). Producing triacetylglycerol with glycerol by two steps: Esterification and acetylation. Fuel Processing Technology, 90, 988–993. DOI: 10.1016/j.fuproc.2009.03.015. http://dx.doi.org/10.1016/j.fuproc.2009.03.01510.1016/j.fuproc.2009.03.015Suche in Google Scholar

[20] Lion, M., Maache, M., Lavalley, J. C., Ramis, G., Busca, G., Rossi, P. F., & Lorenzelli, V. (1990). FT-IR study of the Brønsted acidity of phosphated and sulphated silica catalysts. Journal of Molecular Structure, 218, 417–422. DOI: 10.1016/0022-2860(90)80303-2. http://dx.doi.org/10.1016/0022-2860(90)80303-210.1016/0022-2860(90)80303-2Suche in Google Scholar

[21] Lotero, E., Liu, Y. J., Lopez, D. E., Suwannakarn, K., Bruce, D. A., & Goodwin, J. G., Jr. (2005). Synthesis of biodiesel via acid catalysis. Industrial & Engineering Chemistry Research, 44, 5353–5363. DOI: 10.1021/ie049157g. http://dx.doi.org/10.1021/ie049157g10.1021/ie049157gSuche in Google Scholar

[22] Manríquez, M. E., López, T., Gomez, R., Picquart, M., & Hernández-Cortez, J. G. (2004). Sol-gel silica modified with phosphate and sulfate ions. Journal of Non-Crystalline Solids, 345–346, 643–646. DOI: 10.1016/j.jnoncrysol.2004.08.115. http://dx.doi.org/10.1016/j.jnoncrysol.2004.08.11510.1016/j.jnoncrysol.2004.08.115Suche in Google Scholar

[23] Melada, S., Ardizzone, S. A., & Bianchi, C. L. (2004). Sulphated zirconia by sol-gel route. The effects of the preparative variables. Microporous and Mesoporous Materials, 73, 203–209. DOI: 10.1016/j.micromeso.2004.05.014. http://dx.doi.org/10.1016/j.micromeso.2004.05.01410.1016/j.micromeso.2004.05.014Suche in Google Scholar

[24] Melero, J. A., Iglesias, J., & Morales, G. (2009). Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chemistry, 11, 1285–1308. DOI: 10.1039/b902086a. http://dx.doi.org/10.1039/b902086a10.1039/b902086aSuche in Google Scholar

[25] Melero, J. A., Bautista, L. F., Morales, G., Iglesias, J., & Sánchez-Vázquez, R. (2010). Biodiesel production from crude palm oil using sulfonic acid-modified mesostructured catalysts. Chemical Engineering Journal, 161, 323–331. DOI: 10.1016/j.cej.2009.12.037. http://dx.doi.org/10.1016/j.cej.2009.12.03710.1016/j.cej.2009.12.037Suche in Google Scholar

[26] Mukai, S. R., Sugiyama, T., & Tamon, H. (2003). Immobilization of heteropoly acids in the network structure of carbon gels. Applied Catalysis A: General, 256, 99–105. DOI: 10.1016/s0926-860x(03)00391-0. http://dx.doi.org/10.1016/S0926-860X(03)00391-010.1016/S0926-860X(03)00391-0Suche in Google Scholar

[27] Nabeshima, K. I. (1995). JP Patent No. 276787. Tokyo, Japan: Japan Patent Office. Suche in Google Scholar

[28] Nebel, B., Mittelbach, M., & Uray, G. (2008). Determination of the composition of acetylglycerol mixtures by 1H NMR followed by GC investigation. Analytical Chemistry, 80, 8712–8716. DOI: 10.1021/ac800706s. http://dx.doi.org/10.1021/ac800706s10.1021/ac800706sSuche in Google Scholar

[29] Nomura, T. H. (1995). JP Patent No. 203429. Tokyo, Japan: Japan Patent Office. Suche in Google Scholar

[30] Petchmala, A., Laosiripojana, N., Jongsomjit, B., Goto, M., Panpranot, J., Mekasuwandumrong, O., & Shotipruk, A. (2010). Transesterification of palm oil and esterification of palm fatty acid in near- and super-critical methanol with SO4-ZrO2 catalysts. Fuel, 89, 2387–2392. DOI: 10.1016/j. fuel.2010.04.010. http://dx.doi.org/10.1016/j.fuel.2010.04.01010.1016/j.fuel.2010.04.010Suche in Google Scholar

[31] Reddy, P. S., Sudarsanam, P., Raju, G., & Reddy, B. M. (2010). Synthesis of bio-additives: Acetylation of glycerol over zirconia-based solid acid catalysts. Catalysis Communications, 11, 1224–1228. DOI: 10.1016/j.catcom.2010.07.006. http://dx.doi.org/10.1016/j.catcom.2010.07.00610.1016/j.catcom.2010.07.006Suche in Google Scholar

[32] Samantaray, S. K., & Parida, K. (2001). Effect of phosphate ion on the textural and catalytic activity of titania-silica mixed oxide. Applied Catalysis A: General, 220, 9–20. DOI: 10.1016/s0926-860x(01)00638-x. http://dx.doi.org/10.1016/S0926-860X(01)00638-X10.1016/S0926-860X(01)00638-XSuche in Google Scholar

[33] Scherer, G. W. (1988). Aging and drying of gels. Journal of Non-Crystalline Solids, 100, 77–92. DOI: 10.1016/0022-3093(88)90008-7. http://dx.doi.org/10.1016/0022-3093(88)90008-710.1016/0022-3093(88)90008-7Suche in Google Scholar

[34] Splinter, S. J., Rofagha, R., McIntyre, N. S., & Erb, U. (1996). XPS characterization of the corrosion films formed on nanocrystalline Ni-P alloys in sulphuric acid. Surface and Interface Analysis, 24, 181–186. DOI: 10.1002/(sici)1096-9918(199603)24:3〈181::aid-sia92〉3.0.co;2-n. http://dx.doi.org/10.1002/(SICI)1096-9918(199603)24:3<181::AID-SIA92>3.0.CO;2-N10.1002/(SICI)1096-9918(199603)24:3<181::AID-SIA92>3.0.CO;2-NSuche in Google Scholar

[35] Sunajadevi, K., & Sugunan, S. (2004). Synthesis, characterization and benzylation activity of nanocrystalline chromia loaded sulfated titania prepared via sol-gel route. Catalysis Communications, 5, 575–581. DOI: 10.1016/j.catcom.2004.07.006. http://dx.doi.org/10.1016/j.catcom.2004.07.00610.1016/j.catcom.2004.07.006Suche in Google Scholar

[36] Taguchi, A. O., Ikeda, Y., Fujita, K., & Masuda, T. (2000). JP Patent No. 298099. Tokyo, Japan: Japan Patent Office. Suche in Google Scholar

[37] Tuzen, M., Soylak, M., Citak, D., Ferreira, H. S., Korn, M. G. A., & Bezerra, M. A. (2009). A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry. Journal of Hazardous Materials, 162, 1041–1045. DOI: 10.1016/j.jhazmat.2008.05.154. http://dx.doi.org/10.1016/j.jhazmat.2008.05.15410.1016/j.jhazmat.2008.05.154Suche in Google Scholar

[38] Watanabe, T., Sugiura, M., Sato, M., Yamada, N., & Nakanishi, K. (2005). Diacylglycerol production in a packed bed bioreactor. Process Biochemistry, 40, 637–643. DOI: 10.1016/j.procbio.2004.01.046. http://dx.doi.org/10.1016/j.procbio.2004.01.04610.1016/j.procbio.2004.01.046Suche in Google Scholar

[39] Zhou, C. H., Beltramini, J. N., Fan, Y. X., & Lu, G. Q. (2008). Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chemical Society Reviews, 37, 527–549. DOI: 10.1039/b707343g. http://dx.doi.org/10.1039/b707343g10.1039/B707343GSuche in Google Scholar

[40] Zhuang, Q., & Miller, J. M. (2001). One-pot sol-gel synthesis of sulfated ZrO2-SiO2 catalysts for alcohol dehydration. Canadian Journal of Chemistry, 79, 1220–1223. DOI: 10.1139/v01-109. http://dx.doi.org/10.1139/v01-10910.1139/v01-109Suche in Google Scholar

Published Online: 2014-5-23
Published in Print: 2014-9-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Environmental catalysis — Topical issue
  2. Structured catalysts for methanol-to-olefins conversion: a review
  3. Diesel soot combustion catalysts: review of active phases
  4. State of the art in catalytic oxidation of chlorinated volatile organic compounds
  5. Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins
  6. Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation
  7. Valorisation of bio-oil resulting from fast pyrolysis of wood
  8. Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x MnxO in cellulose conversion
  9. Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process
  10. Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity
  11. Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)
  12. Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode
  13. CdS/TiO2 composite films for methylene blue photodecomposition under visible light irradiation and non-photocorrosion of cadmium sulfide
  14. Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate
  15. Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air
  16. Solid waste decontamination by thermal desorption and catalytic oxidation methods
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0550-x/html
Button zum nach oben scrollen