Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x MnxO in cellulose conversion
-
Maria Bernardi
, Vinícius Araújo
Abstract
Wurtzite-type Zn1−x MnxO (x = 0, 0.03, 0.05, 0.07) nanostructures were successfully synthesised using a simple microwave-assisted hydrothermal route and their catalytic properties were investigated in the cellulose conversion. The morphology of the nanocatalysts is dopant-dependent. Pure ZnO presented multi-plate morphology with a flower-like shape of nanometric sizes, while the Zn0.97Mn0.03O sample is formed by nanoplates with the presence of spherical nanoparticles; the Zn0.95Mn0.05O and Zn0.93Mn0.07O samples are mainly formed by nanorods with the presence of a small quantity of spherical nanoparticles. The catalyst without Mn did not show any catalytic activity in the cellulose conversion. The Mn doping promoted an increase in the density of weak acid sites which, according to the catalytic results, favoured promotion of the reaction.
[1] Avansi, W., Jr., Ribeiro, C., Leite, E. R., & Mastelaro, V. R. (2011). An efficient synthesis route of Na2V6O16 · nH2O nanowires in hydrothermal conditions. Materials Chemistry and Physics, 127, 56–61. DOI: 10.1016/j.matchemphys.2011.01.017. http://dx.doi.org/10.1016/j.matchemphys.2011.01.01710.1016/j.matchemphys.2011.01.017Suche in Google Scholar
[2] Azzouz, A., Nistor, D., Miron, D., Ursu, A. V., Sajin, T., Monette, F., Niquette, P., & Hausler, R. (2006). Assessment of acid-base strength distribution of ion-exchanged montmorillonites through NH3 and CO2-TPD measurements. Thermochimica Acta, 449, 27–34. DOI: 10.1016/j.tca.2006.07.019. http://dx.doi.org/10.1016/j.tca.2006.07.01910.1016/j.tca.2006.07.019Suche in Google Scholar
[3] Bicker, M., Endres, S., Ott, L., & Vogel, H. (2005). Catalytical conversion of carbohydrates in subcritical water: A new chemical process for lactic acid production. Journal of Molecular Catalysis A: Chemical, 239, 151–157. DOI: 10.1016/j.molcata.2005.06.017. http://dx.doi.org/10.1016/j.molcata.2005.06.01710.1016/j.molcata.2005.06.017Suche in Google Scholar
[4] Corma, A., Iborra, S., & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chemical Reviews, 107, 2411–2502. DOI: 10.1021/cr050989d. http://dx.doi.org/10.1021/cr050989d10.1021/cr050989dSuche in Google Scholar PubMed
[5] Dondi, M., Matteucci, F., Cruciani, G., Gasparotto, G., & Tobaldi, D. M. (2007). Pseudobrookite ceramic pigments: Crystal structural, optical and technological properties. Solid State Sciences, 9, 362–369. DOI: 10.1016/j.solidstatesciences.2007.03.001. http://dx.doi.org/10.1016/j.solidstatesciences.2007.03.00110.1016/j.solidstatesciences.2007.03.001Suche in Google Scholar
[6] dos Santos, J. B., da Silva, F. L., Altino, F. M. R. S., da Silva Moreira, T., Meneghetti, M. R., & Meneghetti, S. M. P. (2013). Cellulose conversion in the presence of catalysts based on Sn(IV). Catalysis Science & Technology, 3, 673–678. DOI: 10.1039/c2cy20457f. http://dx.doi.org/10.1039/c2cy20457f10.1039/C2CY20457FSuche in Google Scholar
[7] Fajardo, H. V., Longo, E., Probst, L. F. D., Valentini, A., Carreño, N. L. V., Nunes, M. R., Maciel, A. P., & Leite, E. R. (2008). Influence of rare earth doping on the structural and catalytic properties of nanostructured tin oxide. Nanoscale Research Letters, 3, 194–199. DOI: 10.1007/s11671-008-9135-3. http://dx.doi.org/10.1007/s11671-008-9135-310.1007/s11671-008-9135-3Suche in Google Scholar
[8] Girisuta, B., Janssen, L. P. B. M., & Heeres, H. J. (2007). Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Industrial & Engineering Chemistry Research, 46, 1696–1708. DOI: 10.1021/ie061186z. http://dx.doi.org/10.1021/ie061186z10.1021/ie061186zSuche in Google Scholar
[9] Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 106, 4044–4098. DOI: 10.1021/cr068360d. http://dx.doi.org/10.1021/cr068360d10.1021/cr068360dSuche in Google Scholar PubMed
[10] Kemdeo, S. M., Sapkal, V. S., & Chaudhari, G. N. (2010). TiO2-SiO2 mixed oxide supported MoO3 catalyst: Physicochemical characterization and activities in nitration of phenol. Journal of Molecular Catalysis A: Chemical, 323, 70–77. DOI: 10.1016/j.molcata.2010.03.017. http://dx.doi.org/10.1016/j.molcata.2010.03.01710.1016/j.molcata.2010.03.017Suche in Google Scholar
[11] Komanoya, T., Kobayashi, H., Hara, K., Chun, W. J., & Fukuoka, A. (2011). Catalysis and characterization of carbon-supported ruthenium for cellulose hydrolysis. Applied Catalysis A: General, 407, 188–194. DOI: 10.1016/j.apcata. 2011.08.039. http://dx.doi.org/10.1016/j.apcata.2011.08.03910.1016/j.apcata.2011.08.039Suche in Google Scholar
[12] Larson, A. C., & Von Dreele, R. B. (1994). General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86-748. Los Alamos, NM, USA: Los Alamos National Laboratory. Suche in Google Scholar
[13] Luo, C., Wang, S., & Liu, H. (2007). Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. Angewandte Chemie International Edition, 46, 7636–7639. DOI: 10.1002/anie.200702661. http://dx.doi.org/10.1002/anie.20070266110.1002/anie.200702661Suche in Google Scholar PubMed
[14] Milao, T. M., de Mendonça, V. R., Araújo, V. D., Avansi, W., Ribeiro, C., Longo, E., & Bernardi, M. I. B. (2012). Microwave hydrothermal synthesis and photocatalytic performance of ZnO and M:ZnO nanostructures (M = V, Fe, Co). Science of Advanced Materials, 4, 54–60. DOI: 10.1166/sam.2012.1252. http://dx.doi.org/10.1166/sam.2012.125110.1166/sam.2012.1252Suche in Google Scholar
[15] Oliveira, J. F. A., Milão, T. M., Araújo, V. D., Moreira, M. L., Longo, E., & Bernardi, M. I. B. (2011). Influence of different solvents on the structural, optical and morphological properties of CdS nanoparticles. Journal of Alloys and Compounds, 509, 6880–6883. DOI: 10.1016/j.jallcom.2011.03.171. http://dx.doi.org/10.1016/j.jallcom.2011.03.17110.1016/j.jallcom.2011.03.171Suche in Google Scholar
[16] Onda, A., Ochi, T., & Yanagisawa, K. (2008). Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chemistry, 10, 1033–1037. DOI: 10.1039/b808471h. http://dx.doi.org/10.1039/b808471h10.1039/b808471hSuche in Google Scholar
[17] Robles-Nuñez, J., Chiñas-Castillo, F., Sanchez-Rubio, M., Lara-Romero, J., Huirache-Acuña, R., Jimenez-Sandoval, S., & Alonso-Nuñez, G. (2012). Improved hydrothermal synthesis of MoS2 sheathed carbon nanotubes. Chemical Papers, 66, 1130–1136. DOI: 10.2478/s11696-012-0227-2. http://dx.doi.org/10.2478/s11696-012-0227-210.2478/s11696-012-0227-2Suche in Google Scholar
[18] Stroppa, D. G., Montoro, L. A., Beltrán, A., Conti, T. G., da Silva, R. O., Andrés, J., Longo, E., Leite, E. R., & Ramirez, A. J. (2009). Unveiling the chemical and morphological features of Sb-SnO2 nanocrystals by the combined use of highresolution transmission electron microscopy and ab initio surface energy calculations. Journal of the American Chemical Society, 131, 14544–14548. DOI: 10.1021/ja905896u. http://dx.doi.org/10.1021/ja905896u10.1021/ja905896uSuche in Google Scholar PubMed
[19] Zhang, Y., Xue, Y., & Yu, M. (2011). Hydrothermal synthesis of core-shell structured PS@GdPO4:Tb3+/Ce3+ spherical particles and their luminescence properties. Chemical Papers, 65, 29–35. DOI: 10.2478/s11696-010-0088-5. http://dx.doi.org/10.2478/s11696-010-0088-510.2478/s11696-010-0088-5Suche in Google Scholar
[20] Zou, Y. L., Li, Y., Li, J. G., & Xie, W. J. (2012). Hydrothermal synthesis of momordica-like CuO nanostructures using egg white and their characterisation. Chemical Papers, 66, 278–283. DOI: 10.2478/s11696-012-0139-1. http://dx.doi.org/10.2478/s11696-012-0139-110.2478/s11696-012-0139-1Suche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Environmental catalysis — Topical issue
- Structured catalysts for methanol-to-olefins conversion: a review
- Diesel soot combustion catalysts: review of active phases
- State of the art in catalytic oxidation of chlorinated volatile organic compounds
- Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins
- Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation
- Valorisation of bio-oil resulting from fast pyrolysis of wood
- Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x MnxO in cellulose conversion
- Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process
- Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity
- Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)
- Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode
- CdS/TiO2 composite films for methylene blue photodecomposition under visible light irradiation and non-photocorrosion of cadmium sulfide
- Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate
- Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air
- Solid waste decontamination by thermal desorption and catalytic oxidation methods
Artikel in diesem Heft
- Environmental catalysis — Topical issue
- Structured catalysts for methanol-to-olefins conversion: a review
- Diesel soot combustion catalysts: review of active phases
- State of the art in catalytic oxidation of chlorinated volatile organic compounds
- Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins
- Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation
- Valorisation of bio-oil resulting from fast pyrolysis of wood
- Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x MnxO in cellulose conversion
- Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process
- Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity
- Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)
- Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode
- CdS/TiO2 composite films for methylene blue photodecomposition under visible light irradiation and non-photocorrosion of cadmium sulfide
- Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate
- Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air
- Solid waste decontamination by thermal desorption and catalytic oxidation methods