Home Structured catalysts for methanol-to-olefins conversion: a review
Article
Licensed
Unlicensed Requires Authentication

Structured catalysts for methanol-to-olefins conversion: a review

  • Jasper Lefevere EMAIL logo , Steven Mullens , Vera Meynen and Jasper Noyen
Published/Copyright: May 23, 2014
Become an author with De Gruyter Brill

Abstract

Conversion of methanol to light olefins is a promising alternative for the conversion of new feed-stocks such as gas, coal or biomass to ethylene and propylene via the methanol-to-olefins (MTO) process. During the last decade, the use of structured catalysts in this reaction has received increasing attention. The effect of such structured catalysts on the stability and selectivity is discussed in this review. The reaction and coking mechanism show the importance of good mass transfer properties of the catalyst in the MTO reaction. Important aspects such as thickness of the coating, crystal size of the zeolite and architecture of the support on the mass transfer properties of the final catalyst are highlighted. An overview of the results of structured catalysts used in the MTO reaction is presented.

[1] Aramburo, L. R., Karwacki, L., Cubillas, P., Asahina, S., de Winter, D. M., Drury, M. R., Buurmans, I. L. C., Stavicki, E., Mores, D., Daturi, M., Bazin, P., Dumas, P., Thibault-Starzik, F., Post, J. A., Anderson, M. W., Terasaki, O., & Weckhuysen, B. M. (2011). The porosity, acidity, and reactivity of dealuminated zeolite ZSM-5 at the single particle level: The influence of the zeolite architecture. Chemistry a European Journal, 17, 13773–13781. DOI: 10.1002/chem.201101361. http://dx.doi.org/10.1002/chem.20110136110.1002/chem.201101361Search in Google Scholar

[2] Aranzabal, A., Iturbe, D., Romero-Sáez, M., González-Marcos, M. P., González-Velasco, J. R., & González-Marcos, J. A. (2010). Optimization of process parameters on the extrusion of honeycomb shaped monolith of H-ZSM-5 zeolite. Chemical Engineering Journal, 162, 415–423. DOI: 10.1016/j.cej.2010.05.043. http://dx.doi.org/10.1016/j.cej.2010.05.04310.1016/j.cej.2010.05.043Search in Google Scholar

[3] Bjørgen, M., Svelle, S., Joensen, F., Nerlov, J., Kolboe, S., Bonino, F., Palumbo, L., Bordiga, S., & Olsbye, U. (2007). Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. Journal of Catalysis, 249, 195–207. DOI: 10.1016/j.jcat.2007.04.006. http://dx.doi.org/10.1016/j.jcat.2007.04.00610.1016/j.jcat.2007.04.006Search in Google Scholar

[4] Bleken, F. L., Chavan, S., Olsbye, U., Boltz, M., Ocampo, F., & Louis, B. (2012). Conversion of methanol into light olefins over ZSM-5 zeolite: Strategy to enhance propene selectivity. Applied Catalysis A: General, 447–448, 178–185. DOI: 10.1016/j.apcata.2012.09.025. http://dx.doi.org/10.1016/j.apcata.2012.09.02510.1016/j.apcata.2012.09.025Search in Google Scholar

[5] Buciuman, F. C., & Kraushaar-Czarnetzki, B. (2001). Preparation and characterization of ceramic foam supported nanocrystalline zeolite catalysts. Catalysis Today, 69, 337–342. DOI: 10.1016/s0920-5861(01)00387-x. http://dx.doi.org/10.1016/S0920-5861(01)00387-X10.1016/S0920-5861(01)00387-XSearch in Google Scholar

[6] Chae, H. J., Song, Y. H., Jeong, K. E., Kim, C. U., & Jeong, S. Y. (2010). Physicochemical characteristics of ZSM-5/SAPO-34 composite catalyst for MTO reaction. Journal of Physics and Chemistry of Solids, 71, 600–603. DOI: 10.1016/j.jpcs.2009.12.046. http://dx.doi.org/10.1016/j.jpcs.2009.12.04610.1016/j.jpcs.2009.12.046Search in Google Scholar

[7] Chen, D., Moljord, K., Fuglerud, T., & Holmen, A. (1999). The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction. Microporous and Mesoporous Materials, 29, 191–203. DOI: 10.1016/s1387-1811(98)00331-x. http://dx.doi.org/10.1016/S1387-1811(98)00331-X10.1016/S1387-1811(98)00331-XSearch in Google Scholar

[8] Chen, J. Q., Bozzano, A., Glover, B., Fuglerud, T., & Kvisle, S. (2005). Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catalysis Today, 106, 103–107. DOI: 10.1016/j.cattod.2005.07.178. http://dx.doi.org/10.1016/j.cattod.2005.07.17810.1016/j.cattod.2005.07.178Search in Google Scholar

[9] Chen, D., Moljord, K., & Holmen, A. (2012). A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts. Microporous and Mesoporous Materials, 164, 239–250. DOI: 10.1016/j.micromeso.2012.06.046. http://dx.doi.org/10.1016/j.micromeso.2012.06.04610.1016/j.micromeso.2012.06.046Search in Google Scholar

[10] Dahl, I. M., & Kolboe, S. (1993). On the reaction mechanism for propene formation in the MTO reaction over SAPO-34. Catalysis Letters, 20, 329–336. DOI: 10.1007/bf00769305. http://dx.doi.org/10.1007/BF0076930510.1007/BF00769305Search in Google Scholar

[11] Dahl, I. M., & Kolboe, S. (1994). On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: I. Isotopic labeling studies of the co-reaction of ethene and methanol. Journal of Catalysis, 149, 458–464. DOI: 10.1006/jcat.1994.1312. http://dx.doi.org/10.1006/jcat.1994.131210.1006/jcat.1994.1312Search in Google Scholar

[12] Dahl, I. M., Wendelbo, R., Andersen, A., Akporiaye, D., Mostad, H., & Fuglerud, T. (1999). The effect of crystallite size on the activity and selectivity of the reaction of ethanol and 2-propanol over SAPO-34. Microporous and Mesoporous Materials, 29, 159–171. DOI: 10.1016/s1387-1811(98)00328-x. http://dx.doi.org/10.1016/S1387-1811(98)00328-X10.1016/S1387-1811(98)00328-XSearch in Google Scholar

[13] Dai, C. N., Lei, Z. G., Li, Q. S., & Chen, B. H. (2012). Pressure drop and mass transfer study in structured catalytic packings. Separation and Purification Technology, 98, 78–87. DOI: 10.1016/j.seppur.2012.06.035. http://dx.doi.org/10.1016/j.seppur.2012.06.03510.1016/j.seppur.2012.06.035Search in Google Scholar

[14] Dietrich, B. (2012). Pressure drop correlation for ceramic and metal sponges. Chemical Engineering Science, 74, 192–199. DOI: 10.1016/j.ces.2012.02.047. http://dx.doi.org/10.1016/j.ces.2012.02.04710.1016/j.ces.2012.02.047Search in Google Scholar

[15] Ferreira Madeira, F., Ben Tayeb, K., Pinard, L., Vezin, H., Maury, S., & Cadran, N. (2012). Ethanol transformation into hydrocarbons on ZSM-5 zeolites: Influence of Si/Al ratio on catalytic performances and deactivation rate. Study of the radical species role. Applied Catalysis A: General, 443–444, 171–180. DOI: 10.1016/j.apcata.2012.07.037. http://dx.doi.org/10.1016/j.apcata.2012.07.03710.1016/j.apcata.2012.07.037Search in Google Scholar

[16] Ferrizz, R. M., Stuecker, J. N., Cesarano, J., III., & Miller, J. E. (2005). Monolithic supports with unique geometries and enhanced mass transfer. Industrial & Engineering Chemistry Research, 44, 302–308. DOI: 10.1021/ie049468r. http://dx.doi.org/10.1021/ie049468r10.1021/ie049468rSearch in Google Scholar

[17] Furumoto, Y., Harada, Y., Tsunoji, N., Takahashi, A., Fujitani, T., Ide, Y., Sadakane, M., & Sano, T. (2011). Effect of acidity of ZSM-5 zeolite on conversion of ethanol to propylene. Applied Catalysis A: General, 399, 262–267. DOI: 10.1016/j.apcata.2011.04.009. http://dx.doi.org/10.1016/j.apcata.2011.04.00910.1016/j.apcata.2011.04.009Search in Google Scholar

[18] Guo, W. Y., Xiao, W. D., & Luo, M. (2012). Comparison among monolithic and randomly packed reactors for the methanolto-propylene process. Chemical Engineering Journal, 207–208, 734–745. DOI: 10.1016/j.cej.2012.07.046. http://dx.doi.org/10.1016/j.cej.2012.07.04610.1016/j.cej.2012.07.046Search in Google Scholar

[19] Guo, W. Y., Wu, W. H., Luo, M., & Xiao, W. D. (2013). Modeling of diffusion and reaction in monolithic catalysts for the methanol-to-propylene process. Fuel Processing Technology, 108, 133–138. DOI: 10.1016/j.fuproc.2012.06.005. http://dx.doi.org/10.1016/j.fuproc.2012.06.00510.1016/j.fuproc.2012.06.005Search in Google Scholar

[20] Hemelsoet, K., Van der Mynsbrugge, J., De Wispelaere, K., Waroquier, M., & Van Speybroeck, V. (2013). Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment. ChemPhysChem, 14, 1526–1545. DOI: 10.1002/cphc.201201023. http://dx.doi.org/10.1002/cphc.20120102310.1002/cphc.201201023Search in Google Scholar PubMed

[21] Hereijgers, B. P. C., Bleken, F., Nilsen, M. H., Svelle, S., Lillerud, K. P., Bjørgen, M., Weckhuysen, B. M., & Olsbye, U. (2009). Product shape selectivity dominates the Methanol-to-Olefins (MTO) reaction over HSAPO-34 catalysts. Journal of Catalysis, 264, 77–87. DOI: 10.1016/j.jcat.2009.03.009. http://dx.doi.org/10.1016/j.jcat.2009.03.00910.1016/j.jcat.2009.03.009Search in Google Scholar

[22] Inoue, K., Okabe, K., Inaba, M., Takahara, I., & Murata, K. (2010). Metal modification effects on ethanol conversion to propylene by H-ZSM-5 with Si/Al2 ratio of 150. Reaction Kinetics, Mechanisms and Catalysis, 101, 477–489. DOI: 10.1007/s11144-010-0245-4. http://dx.doi.org/10.1007/s11144-010-0245-410.1007/s11144-010-0245-4Search in Google Scholar

[23] Ivanova, S., Louis, B., Madani, B., Tessonnier, J. P., Ledoux, M. J., & Pham Huu, C. (2007). ZSM-5 coatings on β-SiC monoliths: Possible new structured catalyst for the methanol-toolefins process. Journal of Physical Chemistry C, 111, 4368–4374. DOI: 10.1021/jp067535k. http://dx.doi.org/10.1021/jp067535k10.1021/jp067535kSearch in Google Scholar

[24] Ivanova, S., Vanhaecke, E., Dreibine, L., Louis, B., Pham, C., & Pham Huu, C. (2009). Binderless HZSM-5 coating on β-SiC for different alcohols dehydration. Applied Catalysis A: General, 359, 151–157. DOI: 10.1016/j.apcata.2009.02.024. http://dx.doi.org/10.1016/j.apcata.2009.02.02410.1016/j.apcata.2009.02.024Search in Google Scholar

[25] Jiao, Y. L., Jiang, C. H., Yang, Z. M., & Zhang, J. S. (2012). Controllable synthesis of ZSM-5 coatings on SiC foam support for MTP application. Microporous and Mesoporous Materials, 162, 152–158. DOI: 10.1016/j.micromeso.2012.05.034. http://dx.doi.org/10.1016/j.micromeso.2012.05.03410.1016/j.micromeso.2012.05.034Search in Google Scholar

[26] Jiao, Y. L., Jiang, C. H., Yang, Z. M., Liu, J., & Zhang, J. S. (2013). Synthesis of highly accessible ZSM-5 coatings on SiC foam support for MTP reaction. Microporous and Mesoporous Materials, 181, 201–207. DOI: 10.1016/j.micromeso.2013.07.013. http://dx.doi.org/10.1016/j.micromeso.2013.07.01310.1016/j.micromeso.2013.07.013Search in Google Scholar

[27] Kaarsholm, M., Joensen, F., Nerlov, J., Cenni, R., Chaouki, J., & Patience, G. S. (2007). Phosphorous modified ZSM-5: Deactivation and product distribution for MTO. Chemical Engineering Science, 62, 5527–5532. DOI: 10.1016/j.ces.2006.12.076. http://dx.doi.org/10.1016/j.ces.2006.12.07610.1016/j.ces.2006.12.076Search in Google Scholar

[28] Keil, F. J. (1999). Methanol-to-hydrocarbons: process technology. Microporous and Mesoporous Materials, 29, 49–66. DOI: 10.1016/s1387-1811(98)00320-5. http://dx.doi.org/10.1016/S1387-1811(98)00320-510.1016/S1387-1811(98)00320-5Search in Google Scholar

[29] Lee, Y. J., Lee, J. S., Park, Y. S., & Yoon, K. B. (2001). Synthesis of large monolithic zeolite foams with variable macropore architectures. Advanced Materials, 13, 1259–1263. DOI: 10.1002/1521-4095(200108)13:16〈1259::aid-adma1259〉3.0.co;2-u. http://dx.doi.org/10.1002/1521-4095(200108)13:16<1259::AID-ADMA1259>3.0.CO;2-U10.1002/1521-4095(200108)13:16<1259::AID-ADMA1259>3.0.CO;2-USearch in Google Scholar

[30] Lee, Y. J., Kim, Y. W., Jun, K. W., Viswanadham, N., Bae, J. W., & Park, H. S. (2009). Textural properties and catalytic applications of ZSM-5 monolith foam for methanol conversion. Catalysis Letters, 129, 408–415. DOI: 10.1007/s10562-008-9811-z. http://dx.doi.org/10.1007/s10562-008-9811-z10.1007/s10562-008-9811-zSearch in Google Scholar

[31] Lee, Y. J., Kim, Y. W., Viswanadham, N., Jun, K. W., & Bae, J. W. (2010). Novel aluminophosphate (AlPO) bound ZSM-5 extrudates with improved catalytic properties for methanol to propylene (MTP) reaction. Applied Catalysis A: General, 374, 18–25. DOI: 10.1016/j.apcata.2009.11.019. http://dx.doi.org/10.1016/j.apcata.2009.11.01910.1016/j.apcata.2009.11.019Search in Google Scholar

[32] Lefevere, J., Gysen, M., Mullens, S., Meynen, V., & Van Noyen, J. (2013). The benefit of design of support architectures for zeolite coated structured catalysts for alcoholto-olefin conversion. Catalysis Today, 216, 18–23. DOI: 10.1016/j.cattod.2013.05.020. http://dx.doi.org/10.1016/j.cattod.2013.05.02010.1016/j.cattod.2013.05.020Search in Google Scholar

[33] Leong, K. F., Cheah, C. M., & Chua, C. K. (2003). Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials, 24, 2363–2378. DOI: 10.1016/s0142-9612(03)00030-9. http://dx.doi.org/10.1016/S0142-9612(03)00030-910.1016/S0142-9612(03)00030-9Search in Google Scholar

[34] Lewis, J. A., Smay, J. E., Stuecker, J., & Cesarano, J. III. (2006). Direct ink writing of three-dimensional ceramic structures. Journal of the American Ceramic Society, 89, 3599–3609. DOI: 10.1111/j.1551-2916.2006.01382.x. http://dx.doi.org/10.1111/j.1551-2916.2006.01382.x10.1111/j.1551-2916.2006.01382.xSearch in Google Scholar

[35] Li, J. Z., Wei, Y. X., Liu, G. G., Qi, Y., Tian, P., Li, B., He, Y. L., & Liu, Z. M. (2011). Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeolite topology. Catalysis Today, 171, 221–228. DOI: 10.1016/j.cattod.2011.02.027. http://dx.doi.org/10.1016/j.cattod.2011.02.02710.1016/j.cattod.2011.02.027Search in Google Scholar

[36] Lopez-Orozco, S., Inayat, A., Schwab, A., Selvam, T., & Schwieger, W. (2011). Zeolitic materials with hierarchical porous structures. Advanced Materials, 23, 2602–2615. DOI: 10.1002/adma.201100462. http://dx.doi.org/10.1002/adma.20110046210.1002/adma.201100462Search in Google Scholar PubMed

[37] Louis, B., Ocampo, F., Yun, H. S., Tessonnier, J. P., & Maciel Pereira, M. (2010). Hierarchical pore ZSM-5 zeolite structures: From micro-to macro-engineering of structured catalysts. Chemical Engineering Journal, 161, 397–402. DOI: 10.1016/j.cej.2009.09.041. http://dx.doi.org/10.1016/j.cej.2009.09.04110.1016/j.cej.2009.09.041Search in Google Scholar

[38] McCann, D. M., Lesthaeghe, D., Kletnieks, P. W., Guenther, D. R., Hayman, M. J., Van Speybroeck, V., Waroquier, M., & Haw, J. F. (2008). A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment. Angewandte Chemie International Edition, 47, 5179–5182. DOI: 10.1002/anie.200705453. http://dx.doi.org/10.1002/anie.20070545310.1002/anie.200705453Search in Google Scholar PubMed

[39] Meng, T., Mao, D. S., Guo, Q. S., & Lu, G. Z. (2012). The effect of crystal sizes of HZSM-5 zeolites in ethanol conversion to propylene. Catalysis Communications, 21, 52–57. DOI: 10.1016/j.catcom.2012.01.030. http://dx.doi.org/10.1016/j.catcom.2012.01.03010.1016/j.catcom.2012.01.030Search in Google Scholar

[40] Menges, M., & Kraushaar-Czarnetzki, B. (2012). Kinetics of methanol to olefins over AlPO4-bound ZSM-5 extrudates in a two-stage unit with dimethyl ether pre-reactor. Microporous and Mesoporous Materials, 164, 172–181. DOI: 10.1016/j.micromeso.2012.07.012. http://dx.doi.org/10.1016/j.micromeso.2012.07.01210.1016/j.micromeso.2012.07.012Search in Google Scholar

[41] Mitchell, S., Michels, N. L., Kunze, K., & Pérez-Ramirez, J. (2012). Visualisation of hierarchically structured zeolite bodies from macro to nano length scales. Nature Chemistry, 4, 825–831. DOI: 10.1038/nchem.1403. http://dx.doi.org/10.1038/nchem.140310.1038/nchem.1403Search in Google Scholar

[42] Mitchell, S., Michels, N. L., & Pérez-Ramírez, J. (2013). From powder to technical body: the undervalued science of catalyst scale up. Chemical Society Reviews, 2013, 6094–6112. DOI: 10.1039/c3cs60076a. http://dx.doi.org/10.1039/c3cs60076a10.1039/c3cs60076aSearch in Google Scholar

[43] Möller, K. P., Böhringer, W., Schnitzler, A. E., van Steen, E., & O’Connor, C. T. (1999). The use of a jet loop reactor to study the effect of crystal size and the co-feeding of olefins and water on the conversion of methanol over HZSM-5. Microporous and Mesoporous Materials, 29, 127–144. DOI: 10.1016/s1387-1811(98)00326-6. http://dx.doi.org/10.1016/S1387-1811(98)00326-610.1016/S1387-1811(98)00326-6Search in Google Scholar

[44] Mores, D., Stavitski, E., Kox, M. H. F., Kornatowski, J., Olsbye, U., & Weckhuysen, B. M. (2008). Space- and timeresolved in-situ spectroscopy on the coke formation in molecular sieves: Methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34. Chemistry — A European Journal, 14, 11320–11327. DOI: 10.1002/chem.200801293. http://dx.doi.org/10.1002/chem.20080129310.1002/chem.200801293Search in Google Scholar PubMed

[45] Ocampo, F., Cunha, J. A., de Lima Santos, M. R., Tessonnier, J. P., Pereira, M. M., & Louis, B. (2010). Synthesis of zeolite crystals with unusual morphology: Application in acid catalysis. Applied Catalysis A: General, 390, 102–109. DOI: 10.1016/j.apcata.2010.09.037. http://dx.doi.org/10.1016/j.apcata.2010.09.03710.1016/j.apcata.2010.09.037Search in Google Scholar

[46] Olsbye, U., Bjørgen, M., Svelle, S., Lillerud, K. P., & Kolboe, S. (2005). Mechanistic insight into the methanol-tohydrocarbons reaction. Catalysis Today, 106, 108–111. DOI: 10.1016/j.cattod.2005.07.135. http://dx.doi.org/10.1016/j.cattod.2005.07.13510.1016/j.cattod.2005.07.135Search in Google Scholar

[47] Olsbye, U., Svelle, S., Bjørgen, M., Beato, P., Janssens, T. V. W., Joensen, F., Bordiga, S., & Lillerud, K. P. (2012). Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity. Angewandte Chemie International Edition, 51, 5810–5831. DOI: 10.1002/anie.201103657. http://dx.doi.org/10.1002/anie.20110365710.1002/anie.201103657Search in Google Scholar PubMed

[48] Pangarkar, K., Schildhauer, T. J., Ruud van Ommen, J., Nijenhuis, J., Kapteijn, F., & Moulijn, J. A. (2008). Structured packings for multiphase catalytic reactors. Industrial & Engineering Chemistry Research, 47, 3720–3751. DOI: 10.1021/ie800067r. http://dx.doi.org/10.1021/ie800067r10.1021/ie800067rSearch in Google Scholar

[49] Park, J. W., Kim, S. J., Seo, M. G., Kim, S. Y., Sugi, Y., & Seo, G. (2008a). Product selectivity and catalytic deactivation of MOR zeolites with different acid site densities in methanol-to-olefin (MTO) reactions. Applied Catalysis A: General, 349, 76–85. DOI: 10.1016/j.apcata.2008.07.006. http://dx.doi.org/10.1016/j.apcata.2008.07.00610.1016/j.apcata.2008.07.006Search in Google Scholar

[50] Park, J. W., Lee, J. Y., Kim, K. S., Hong, S. B., & Seo, G. (2008b). Effects of cage shape and size of 8-membered ring molecular sieves on their deactivation in methanol-to-olefin (MTO) reactions. Applied Catalysis A: General, 339, 36–44. DOI: 10.1016/j.apcata.2008.01.005. http://dx.doi.org/10.1016/j.apcata.2008.01.00510.1016/j.apcata.2008.01.005Search in Google Scholar

[51] Patcas, F. C. (2005). The methanol-to-olefins conversion over zeolite-coated ceramic foams. Journal of Catalysis, 231, 194–200. DOI: 10.1016/j.jcat.2005.01.016. http://dx.doi.org/10.1016/j.jcat.2005.01.01610.1016/j.jcat.2005.01.016Search in Google Scholar

[52] Perdana, I., Creaser, D., Lindmark, J., & Hedlund, J. (2010). Influence of NOx adsorbed species on component permeation through ZSM-5 membranes. Journal of Membrane Science, 349, 83–89. DOI: 10.1016/j.memsci.2009.11.030. http://dx.doi.org/10.1016/j.memsci.2009.11.03010.1016/j.memsci.2009.11.030Search in Google Scholar

[53] Rahimi, N., & Karimzadeh, R. (2011). Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review. Applied Catalysis A: General, 398, 1–17. DOI: 10.1016/j.apcata.2011.03.009. http://dx.doi.org/10.1016/j.apcata.2011.03.00910.1016/j.apcata.2011.03.009Search in Google Scholar

[54] Ren, T., Patel, M. K., & Blok, K. (2008). Steam cracking and methane to olefins: Energy use, CO2 emissions and production costs. Energy, 33, 817–833. DOI: 10.1016/j.energy.2008.01.002. 10.1016/j.energy.2008.01.002Search in Google Scholar

[55] Ren, T., Daniëls, B., Patel, M. K., & Blok, K. (2009). Petrochemicals from oil, natural gas, coal and biomass: Production costs in 2030–2050. Resources, Conservation and Recycling, 53, 653–663. DOI: 10.1016/j.resconrec.2009.04.016. http://dx.doi.org/10.1016/j.resconrec.2009.04.01610.1016/j.resconrec.2009.04.016Search in Google Scholar

[56] Rownaghi, A. A., Rezaei, F., & Hedlund, J. (2011). Yield of gasoline-range hydrocarbons as a function of uniform ZSM-5 crystal size. Catalysis Communications, 14, 37–41. DOI:10.1016/j.catcom.2011.07.015. http://dx.doi.org/10.1016/j.catcom.2011.07.01510.1016/j.catcom.2011.07.015Search in Google Scholar

[57] Sano, T., Kiyozumi, Y., & Shin, S. (1992). Synthesis of light olefins from methanol using ZSM-5 type zeolite catalysts. Journal of the Japan Petroleum Institute, 35, 429–440. http://dx.doi.org/10.1627/jpi1958.35.42910.1627/jpi1958.35.429Search in Google Scholar

[58] Seijger, G. B. F., Oudshoorn, O. L., van Kooten, W. E. J., Jansen, J. C., van Bekkum, H., van den Bleek, C. M., & Calis, H. P. A. (2000). In situ synthesis of binderless ZSM-5 zeolitic coatings on ceramic foam supports. Microporous and Mesoporous Materials, 39, 195–204. DOI: 10.1016/s1387-1811(00)00196-7. http://dx.doi.org/10.1016/S1387-1811(00)00196-710.1016/S1387-1811(00)00196-7Search in Google Scholar

[59] Shan, Z., van Kooten, W. E. J., Oudshoorn, O. L., Jansen, J. C., van Bekkum, H., van den Bleek, C. M., & Calis, H. P. A. (2000). Optimization of the preparation of binderless ZSM-5 coatings on stainless steel monoliths by in situ hydrothermal synthesis. Microporous and Mesoporous Materials, 34, 81–91. DOI: 10.1016/s1387-1811(99)00161-4. http://dx.doi.org/10.1016/S1387-1811(99)00161-410.1016/S1387-1811(99)00161-4Search in Google Scholar

[60] Stöcker, M. (1999). Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous and Mesoporous Materials, 29, 3–48. DOI: 10.1016/s1387-1811(98)00319-9. http://dx.doi.org/10.1016/S1387-1811(98)00319-910.1016/S1387-1811(98)00319-9Search in Google Scholar

[61] Stuecker, J. N., Miller, J. E., Ferrizz, R. E., Mudd, J. E., & Cesarano, J., III. (2004). Advanced support structures for enhanced catalytic activity. Industrial & Engineering Chemistry Research, 43, 51–55. DOI: 10.1021/ie030291v. http://dx.doi.org/10.1021/ie030291v10.1021/ie030291vSearch in Google Scholar

[62] Svelle, S., Røning, P. O., & Kolboe, S. (2004). Kinetic studies of zeolite-catalyzed methylation reactions: 1. Coreaction of [12C]ethene and [13C]methanol. Journal of Catalysis, 224, 115–123. DOI: 10.1016/j.jcat.2004.02.022. http://dx.doi.org/10.1016/j.jcat.2004.02.02210.1016/j.jcat.2004.02.022Search in Google Scholar

[63] Svelle, S., Røning, P. O., Olsbye, U., & Kolboe, S. (2005). Kinetic studies of zeolite-catalyzed methylation reactions. Part 2. Co-reaction of [12C]propene or [12C]n-butene and [13C]methanol. Journal of Catalysis, 234, 385–400. DOI: 10.1016/j.jcat.2005.06.028. http://dx.doi.org/10.1016/j.jcat.2005.06.02810.1016/j.jcat.2005.06.028Search in Google Scholar

[64] Tago, T., Iwakai, K., Morita, K., Tanaka, K., & Masuda, T. (2005). Control of acid-site location of ZSM-5 zeolite membrane and its application to the MTO reaction. Catalysis Today, 105, 662–666. DOI: 10.1016/j.cattod.2005.06.009. http://dx.doi.org/10.1016/j.cattod.2005.06.00910.1016/j.cattod.2005.06.009Search in Google Scholar

[65] Taheri Najafabadi, A., Fatemi, S., Sohrabi, M., & Salmasi, M. (2012). Kinetic modeling and optimization of the operating condition of MTO process on SAPO-34 catalyst. Journal of Industrial and Engineering Chemistry, 18, 29–37. DOI: 10.1016/j.jiec.2011.11.088. http://dx.doi.org/10.1016/j.jiec.2011.11.08810.1016/j.jiec.2011.11.088Search in Google Scholar

[66] Takahashi, A., Xia, W., Nakamura, I., Shimada, H., & Fujitani, T. (2012). Effects of added phosphorus on conversion of ethanol to propylene over ZSM-5 catalysts. Applied Catalysis A: General, 423–424, 162–167. DOI: 10.1016/j.apcata.2012.02.029. http://dx.doi.org/10.1016/j.apcata.2012.02.02910.1016/j.apcata.2012.02.029Search in Google Scholar

[67] Total Petrochemicals (2008). MTO/OCP: a strategic research project. Testing innovative processes for making plastics. Brussels, Belgium: Total Petrochemicals. Search in Google Scholar

[68] Ulla, M. A., Mallada, R., Coronas, J., Gutierrez, L., Miró, E., & Santamaría, J. (2003). Synthesis and characterization of ZSM-5 coatings onto cordierite honeycomb supports. Applied Catalysis A: General, 253, 257–269. DOI: 10.1016/s0926-860x(03)00498-8. http://dx.doi.org/10.1016/S0926-860X(03)00498-810.1016/S0926-860X(03)00498-8Search in Google Scholar

[69] Valle, B., Alonso, A., Atutxa, A., Gayubo, A. G., & Bilbao, J. (2005). Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process. Catalysis Today, 106, 118–122. DOI: 10.1016/j.cattod.2005.07.132. http://dx.doi.org/10.1016/j.cattod.2005.07.13210.1016/j.cattod.2005.07.132Search in Google Scholar

[70] Van Noyen, J., De Wilde, A., Schroeven, M., Mullens, S., & Luyten, J. (2012). Ceramic processing techniques for catalyst design: Formation, properties, and catalytic example of ZSM-5 on 3-dimensional fiber deposition support structures. International Journal of Applied Ceramic Technology, 9, 902–910. DOI: 10.1111/j.1744-7402.2012.02781.x. http://dx.doi.org/10.1111/j.1744-7402.2012.02781.x10.1111/j.1744-7402.2012.02781.xSearch in Google Scholar

[71] Wender, I. (1996). Reactions of synthesis gas. Fuel Processing Technology, 48, 189–297. DOI: 10.1016/s0378-3820(96)01048-x. http://dx.doi.org/10.1016/S0378-3820(96)01048-X10.1016/S0378-3820(96)01048-XSearch in Google Scholar

[72] Westgård Erichsen, M., Svelle, S., & Olsbye, U. (2013). HSAPO-5 as methanol-to-olefins (MTO) model catalyst: Towards elucidating the effects of acid strength. Journal of Catalysis, 298, 94–101. DOI: 10.1016/j.jcat.2012.11.004. http://dx.doi.org/10.1016/j.jcat.2012.11.00410.1016/j.jcat.2012.11.004Search in Google Scholar

[73] Wu, X. C., & Anthony, R. G. (2001). Effect of feed composition on methanol conversion to light olefins over SAPO-34. Applied Catalysis A: General, 218, 241–250. DOI: 10.1016/s0926-860x(01)00651-2. http://dx.doi.org/10.1016/S0926-860X(01)00651-210.1016/S0926-860X(01)00651-2Search in Google Scholar

[74] Wu, W. Z., Guo, W. Y., Xiao, W., & Luo, M. (2011). Dominant reaction pathway for methanol conversion to propene over high silicon H-ZSM-5. Chemical Engineering Science, 66, 4722–4732. DOI: 10.1016/j.ces.2011.06.036. http://dx.doi.org/10.1016/j.ces.2011.06.03610.1016/j.ces.2011.06.036Search in Google Scholar

[75] Yang, H. Q., Liu, Z. C., Gao, H. X., & Xie, Z. K. (2010). Synthesis and catalytic performances of hierarchical SAPO-34 monolith. Journal of Materials Chemistry, 20, 3227–3231. DOI: 10.1039/b924736j. http://dx.doi.org/10.1039/b924736j10.1039/b924736jSearch in Google Scholar

[76] Yang, Y., Sun, C., Du, J. M., Yue, Y. H., Hua, W. M., Zhang, C. L., Shen, W., & Xu, H. (2012). The synthesis of endurable B-Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction. Catalysis Communications, 24, 44–47. DOI: 10.1016/j.catcom.2012.03.013. http://dx.doi.org/10.1016/j.catcom.2012.03.01310.1016/j.catcom.2012.03.013Search in Google Scholar

[77] Yao, J. F., Zeng, C. F., Zhang, L. X., & Xu, N. P. (2008). Vapor phase transport synthesis of SAPO-34 films on cordierite honeycombs. Materials Chemistry and Physics, 112, 637–640. DOI: 10.1016/j.matchemphys.2008.06.019. http://dx.doi.org/10.1016/j.matchemphys.2008.06.01910.1016/j.matchemphys.2008.06.019Search in Google Scholar

[78] Yilmaz, B., & Müller, U. (2009). Catalytic applications of zeolites in chemical industry. Topics in Catalysis, 52, 888–895. DOI: 10.1007/s11244-009-9226-0. http://dx.doi.org/10.1007/s11244-009-9226-010.1007/s11244-009-9226-0Search in Google Scholar

[79] Zamaniyan, A., Mortazavi, Y., Khodadadi, A. A., & Manafi, H. (2010). Tube fitted bulk monolithic catalyst as novel structured reactor for gas-solid reactions. Applied Catalysis A: General, 385, 214–223. DOI: 10.1016/j.apcata.2010.07.014. http://dx.doi.org/10.1016/j.apcata.2010.07.01410.1016/j.apcata.2010.07.014Search in Google Scholar

[80] Zamaro, J. M., Ulla, M. A., & Miró, E. (2005). Zeolite washcoating onto cordierite honeycomb reactors for environmental applications. Chemical Engineering Journal, 106, 25–33. DOI: 10.1016/j.cej.2004.11.003. http://dx.doi.org/10.1016/j.cej.2004.11.00310.1016/j.cej.2004.11.003Search in Google Scholar

[81] Zamaro, J. M., & Miró, E. E. (2010). Novel binderless zeolite-coated monolith reactor for environmental applications. Chemical Engineering Journal, 165, 701–708. DOI: 10.1016/j.cej.2010.10.014. http://dx.doi.org/10.1016/j.cej.2010.10.01410.1016/j.cej.2010.10.014Search in Google Scholar

[82] Zampieri, A., Kullmann, S., Selvam, T., Bauer, J., Schwieger, W., Sieber, H., Fey, T., & Greil, P. (2006). Bioinspired rattanderived SiSiC/zeolite monoliths: Preparation and characterisation. Microporous and Mesoporous Materials, 90, 162–174. DOI: 10.1016/j.micromeso.2005.10.049. http://dx.doi.org/10.1016/j.micromeso.2005.10.04910.1016/j.micromeso.2005.10.049Search in Google Scholar

[83] Zhu, J., Fan, Y. Q., & Xu, N. P. (2011). Modified dipcoating method for preparation of pinhole-free ceramic membranes. Journal of Membrane Science, 367, 14–20. DOI: 10.1016/j.memsci.2010.10.024. http://dx.doi.org/10.1016/j.memsci.2010.10.02410.1016/j.memsci.2010.10.024Search in Google Scholar

[84] Zhuang, Y. Q., Gao, X., Zhu, Y. P., & Luo, Z. H. (2012). CFD modeling of methanol to olefins process in a fixed-bed reactor. Powder Technology, 221, 419–430. DOI: 10.1016/j.powtec. 2012.01.041. http://dx.doi.org/10.1016/j.powtec.2012.01.04110.1016/j.powtec.2012.01.041Search in Google Scholar

Published Online: 2014-5-23
Published in Print: 2014-9-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Environmental catalysis — Topical issue
  2. Structured catalysts for methanol-to-olefins conversion: a review
  3. Diesel soot combustion catalysts: review of active phases
  4. State of the art in catalytic oxidation of chlorinated volatile organic compounds
  5. Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins
  6. Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation
  7. Valorisation of bio-oil resulting from fast pyrolysis of wood
  8. Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x MnxO in cellulose conversion
  9. Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process
  10. Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity
  11. Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)
  12. Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode
  13. CdS/TiO2 composite films for methylene blue photodecomposition under visible light irradiation and non-photocorrosion of cadmium sulfide
  14. Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate
  15. Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air
  16. Solid waste decontamination by thermal desorption and catalytic oxidation methods
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0568-0/html
Scroll to top button