Abstract
Conversion of methanol to light olefins is a promising alternative for the conversion of new feed-stocks such as gas, coal or biomass to ethylene and propylene via the methanol-to-olefins (MTO) process. During the last decade, the use of structured catalysts in this reaction has received increasing attention. The effect of such structured catalysts on the stability and selectivity is discussed in this review. The reaction and coking mechanism show the importance of good mass transfer properties of the catalyst in the MTO reaction. Important aspects such as thickness of the coating, crystal size of the zeolite and architecture of the support on the mass transfer properties of the final catalyst are highlighted. An overview of the results of structured catalysts used in the MTO reaction is presented.
[1] Aramburo, L. R., Karwacki, L., Cubillas, P., Asahina, S., de Winter, D. M., Drury, M. R., Buurmans, I. L. C., Stavicki, E., Mores, D., Daturi, M., Bazin, P., Dumas, P., Thibault-Starzik, F., Post, J. A., Anderson, M. W., Terasaki, O., & Weckhuysen, B. M. (2011). The porosity, acidity, and reactivity of dealuminated zeolite ZSM-5 at the single particle level: The influence of the zeolite architecture. Chemistry a European Journal, 17, 13773–13781. DOI: 10.1002/chem.201101361. http://dx.doi.org/10.1002/chem.20110136110.1002/chem.201101361Suche in Google Scholar
[2] Aranzabal, A., Iturbe, D., Romero-Sáez, M., González-Marcos, M. P., González-Velasco, J. R., & González-Marcos, J. A. (2010). Optimization of process parameters on the extrusion of honeycomb shaped monolith of H-ZSM-5 zeolite. Chemical Engineering Journal, 162, 415–423. DOI: 10.1016/j.cej.2010.05.043. http://dx.doi.org/10.1016/j.cej.2010.05.04310.1016/j.cej.2010.05.043Suche in Google Scholar
[3] Bjørgen, M., Svelle, S., Joensen, F., Nerlov, J., Kolboe, S., Bonino, F., Palumbo, L., Bordiga, S., & Olsbye, U. (2007). Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. Journal of Catalysis, 249, 195–207. DOI: 10.1016/j.jcat.2007.04.006. http://dx.doi.org/10.1016/j.jcat.2007.04.00610.1016/j.jcat.2007.04.006Suche in Google Scholar
[4] Bleken, F. L., Chavan, S., Olsbye, U., Boltz, M., Ocampo, F., & Louis, B. (2012). Conversion of methanol into light olefins over ZSM-5 zeolite: Strategy to enhance propene selectivity. Applied Catalysis A: General, 447–448, 178–185. DOI: 10.1016/j.apcata.2012.09.025. http://dx.doi.org/10.1016/j.apcata.2012.09.02510.1016/j.apcata.2012.09.025Suche in Google Scholar
[5] Buciuman, F. C., & Kraushaar-Czarnetzki, B. (2001). Preparation and characterization of ceramic foam supported nanocrystalline zeolite catalysts. Catalysis Today, 69, 337–342. DOI: 10.1016/s0920-5861(01)00387-x. http://dx.doi.org/10.1016/S0920-5861(01)00387-X10.1016/S0920-5861(01)00387-XSuche in Google Scholar
[6] Chae, H. J., Song, Y. H., Jeong, K. E., Kim, C. U., & Jeong, S. Y. (2010). Physicochemical characteristics of ZSM-5/SAPO-34 composite catalyst for MTO reaction. Journal of Physics and Chemistry of Solids, 71, 600–603. DOI: 10.1016/j.jpcs.2009.12.046. http://dx.doi.org/10.1016/j.jpcs.2009.12.04610.1016/j.jpcs.2009.12.046Suche in Google Scholar
[7] Chen, D., Moljord, K., Fuglerud, T., & Holmen, A. (1999). The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction. Microporous and Mesoporous Materials, 29, 191–203. DOI: 10.1016/s1387-1811(98)00331-x. http://dx.doi.org/10.1016/S1387-1811(98)00331-X10.1016/S1387-1811(98)00331-XSuche in Google Scholar
[8] Chen, J. Q., Bozzano, A., Glover, B., Fuglerud, T., & Kvisle, S. (2005). Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catalysis Today, 106, 103–107. DOI: 10.1016/j.cattod.2005.07.178. http://dx.doi.org/10.1016/j.cattod.2005.07.17810.1016/j.cattod.2005.07.178Suche in Google Scholar
[9] Chen, D., Moljord, K., & Holmen, A. (2012). A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts. Microporous and Mesoporous Materials, 164, 239–250. DOI: 10.1016/j.micromeso.2012.06.046. http://dx.doi.org/10.1016/j.micromeso.2012.06.04610.1016/j.micromeso.2012.06.046Suche in Google Scholar
[10] Dahl, I. M., & Kolboe, S. (1993). On the reaction mechanism for propene formation in the MTO reaction over SAPO-34. Catalysis Letters, 20, 329–336. DOI: 10.1007/bf00769305. http://dx.doi.org/10.1007/BF0076930510.1007/BF00769305Suche in Google Scholar
[11] Dahl, I. M., & Kolboe, S. (1994). On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: I. Isotopic labeling studies of the co-reaction of ethene and methanol. Journal of Catalysis, 149, 458–464. DOI: 10.1006/jcat.1994.1312. http://dx.doi.org/10.1006/jcat.1994.131210.1006/jcat.1994.1312Suche in Google Scholar
[12] Dahl, I. M., Wendelbo, R., Andersen, A., Akporiaye, D., Mostad, H., & Fuglerud, T. (1999). The effect of crystallite size on the activity and selectivity of the reaction of ethanol and 2-propanol over SAPO-34. Microporous and Mesoporous Materials, 29, 159–171. DOI: 10.1016/s1387-1811(98)00328-x. http://dx.doi.org/10.1016/S1387-1811(98)00328-X10.1016/S1387-1811(98)00328-XSuche in Google Scholar
[13] Dai, C. N., Lei, Z. G., Li, Q. S., & Chen, B. H. (2012). Pressure drop and mass transfer study in structured catalytic packings. Separation and Purification Technology, 98, 78–87. DOI: 10.1016/j.seppur.2012.06.035. http://dx.doi.org/10.1016/j.seppur.2012.06.03510.1016/j.seppur.2012.06.035Suche in Google Scholar
[14] Dietrich, B. (2012). Pressure drop correlation for ceramic and metal sponges. Chemical Engineering Science, 74, 192–199. DOI: 10.1016/j.ces.2012.02.047. http://dx.doi.org/10.1016/j.ces.2012.02.04710.1016/j.ces.2012.02.047Suche in Google Scholar
[15] Ferreira Madeira, F., Ben Tayeb, K., Pinard, L., Vezin, H., Maury, S., & Cadran, N. (2012). Ethanol transformation into hydrocarbons on ZSM-5 zeolites: Influence of Si/Al ratio on catalytic performances and deactivation rate. Study of the radical species role. Applied Catalysis A: General, 443–444, 171–180. DOI: 10.1016/j.apcata.2012.07.037. http://dx.doi.org/10.1016/j.apcata.2012.07.03710.1016/j.apcata.2012.07.037Suche in Google Scholar
[16] Ferrizz, R. M., Stuecker, J. N., Cesarano, J., III., & Miller, J. E. (2005). Monolithic supports with unique geometries and enhanced mass transfer. Industrial & Engineering Chemistry Research, 44, 302–308. DOI: 10.1021/ie049468r. http://dx.doi.org/10.1021/ie049468r10.1021/ie049468rSuche in Google Scholar
[17] Furumoto, Y., Harada, Y., Tsunoji, N., Takahashi, A., Fujitani, T., Ide, Y., Sadakane, M., & Sano, T. (2011). Effect of acidity of ZSM-5 zeolite on conversion of ethanol to propylene. Applied Catalysis A: General, 399, 262–267. DOI: 10.1016/j.apcata.2011.04.009. http://dx.doi.org/10.1016/j.apcata.2011.04.00910.1016/j.apcata.2011.04.009Suche in Google Scholar
[18] Guo, W. Y., Xiao, W. D., & Luo, M. (2012). Comparison among monolithic and randomly packed reactors for the methanolto-propylene process. Chemical Engineering Journal, 207–208, 734–745. DOI: 10.1016/j.cej.2012.07.046. http://dx.doi.org/10.1016/j.cej.2012.07.04610.1016/j.cej.2012.07.046Suche in Google Scholar
[19] Guo, W. Y., Wu, W. H., Luo, M., & Xiao, W. D. (2013). Modeling of diffusion and reaction in monolithic catalysts for the methanol-to-propylene process. Fuel Processing Technology, 108, 133–138. DOI: 10.1016/j.fuproc.2012.06.005. http://dx.doi.org/10.1016/j.fuproc.2012.06.00510.1016/j.fuproc.2012.06.005Suche in Google Scholar
[20] Hemelsoet, K., Van der Mynsbrugge, J., De Wispelaere, K., Waroquier, M., & Van Speybroeck, V. (2013). Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment. ChemPhysChem, 14, 1526–1545. DOI: 10.1002/cphc.201201023. http://dx.doi.org/10.1002/cphc.20120102310.1002/cphc.201201023Suche in Google Scholar PubMed
[21] Hereijgers, B. P. C., Bleken, F., Nilsen, M. H., Svelle, S., Lillerud, K. P., Bjørgen, M., Weckhuysen, B. M., & Olsbye, U. (2009). Product shape selectivity dominates the Methanol-to-Olefins (MTO) reaction over HSAPO-34 catalysts. Journal of Catalysis, 264, 77–87. DOI: 10.1016/j.jcat.2009.03.009. http://dx.doi.org/10.1016/j.jcat.2009.03.00910.1016/j.jcat.2009.03.009Suche in Google Scholar
[22] Inoue, K., Okabe, K., Inaba, M., Takahara, I., & Murata, K. (2010). Metal modification effects on ethanol conversion to propylene by H-ZSM-5 with Si/Al2 ratio of 150. Reaction Kinetics, Mechanisms and Catalysis, 101, 477–489. DOI: 10.1007/s11144-010-0245-4. http://dx.doi.org/10.1007/s11144-010-0245-410.1007/s11144-010-0245-4Suche in Google Scholar
[23] Ivanova, S., Louis, B., Madani, B., Tessonnier, J. P., Ledoux, M. J., & Pham Huu, C. (2007). ZSM-5 coatings on β-SiC monoliths: Possible new structured catalyst for the methanol-toolefins process. Journal of Physical Chemistry C, 111, 4368–4374. DOI: 10.1021/jp067535k. http://dx.doi.org/10.1021/jp067535k10.1021/jp067535kSuche in Google Scholar
[24] Ivanova, S., Vanhaecke, E., Dreibine, L., Louis, B., Pham, C., & Pham Huu, C. (2009). Binderless HZSM-5 coating on β-SiC for different alcohols dehydration. Applied Catalysis A: General, 359, 151–157. DOI: 10.1016/j.apcata.2009.02.024. http://dx.doi.org/10.1016/j.apcata.2009.02.02410.1016/j.apcata.2009.02.024Suche in Google Scholar
[25] Jiao, Y. L., Jiang, C. H., Yang, Z. M., & Zhang, J. S. (2012). Controllable synthesis of ZSM-5 coatings on SiC foam support for MTP application. Microporous and Mesoporous Materials, 162, 152–158. DOI: 10.1016/j.micromeso.2012.05.034. http://dx.doi.org/10.1016/j.micromeso.2012.05.03410.1016/j.micromeso.2012.05.034Suche in Google Scholar
[26] Jiao, Y. L., Jiang, C. H., Yang, Z. M., Liu, J., & Zhang, J. S. (2013). Synthesis of highly accessible ZSM-5 coatings on SiC foam support for MTP reaction. Microporous and Mesoporous Materials, 181, 201–207. DOI: 10.1016/j.micromeso.2013.07.013. http://dx.doi.org/10.1016/j.micromeso.2013.07.01310.1016/j.micromeso.2013.07.013Suche in Google Scholar
[27] Kaarsholm, M., Joensen, F., Nerlov, J., Cenni, R., Chaouki, J., & Patience, G. S. (2007). Phosphorous modified ZSM-5: Deactivation and product distribution for MTO. Chemical Engineering Science, 62, 5527–5532. DOI: 10.1016/j.ces.2006.12.076. http://dx.doi.org/10.1016/j.ces.2006.12.07610.1016/j.ces.2006.12.076Suche in Google Scholar
[28] Keil, F. J. (1999). Methanol-to-hydrocarbons: process technology. Microporous and Mesoporous Materials, 29, 49–66. DOI: 10.1016/s1387-1811(98)00320-5. http://dx.doi.org/10.1016/S1387-1811(98)00320-510.1016/S1387-1811(98)00320-5Suche in Google Scholar
[29] Lee, Y. J., Lee, J. S., Park, Y. S., & Yoon, K. B. (2001). Synthesis of large monolithic zeolite foams with variable macropore architectures. Advanced Materials, 13, 1259–1263. DOI: 10.1002/1521-4095(200108)13:16〈1259::aid-adma1259〉3.0.co;2-u. http://dx.doi.org/10.1002/1521-4095(200108)13:16<1259::AID-ADMA1259>3.0.CO;2-U10.1002/1521-4095(200108)13:16<1259::AID-ADMA1259>3.0.CO;2-USuche in Google Scholar
[30] Lee, Y. J., Kim, Y. W., Jun, K. W., Viswanadham, N., Bae, J. W., & Park, H. S. (2009). Textural properties and catalytic applications of ZSM-5 monolith foam for methanol conversion. Catalysis Letters, 129, 408–415. DOI: 10.1007/s10562-008-9811-z. http://dx.doi.org/10.1007/s10562-008-9811-z10.1007/s10562-008-9811-zSuche in Google Scholar
[31] Lee, Y. J., Kim, Y. W., Viswanadham, N., Jun, K. W., & Bae, J. W. (2010). Novel aluminophosphate (AlPO) bound ZSM-5 extrudates with improved catalytic properties for methanol to propylene (MTP) reaction. Applied Catalysis A: General, 374, 18–25. DOI: 10.1016/j.apcata.2009.11.019. http://dx.doi.org/10.1016/j.apcata.2009.11.01910.1016/j.apcata.2009.11.019Suche in Google Scholar
[32] Lefevere, J., Gysen, M., Mullens, S., Meynen, V., & Van Noyen, J. (2013). The benefit of design of support architectures for zeolite coated structured catalysts for alcoholto-olefin conversion. Catalysis Today, 216, 18–23. DOI: 10.1016/j.cattod.2013.05.020. http://dx.doi.org/10.1016/j.cattod.2013.05.02010.1016/j.cattod.2013.05.020Suche in Google Scholar
[33] Leong, K. F., Cheah, C. M., & Chua, C. K. (2003). Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials, 24, 2363–2378. DOI: 10.1016/s0142-9612(03)00030-9. http://dx.doi.org/10.1016/S0142-9612(03)00030-910.1016/S0142-9612(03)00030-9Suche in Google Scholar
[34] Lewis, J. A., Smay, J. E., Stuecker, J., & Cesarano, J. III. (2006). Direct ink writing of three-dimensional ceramic structures. Journal of the American Ceramic Society, 89, 3599–3609. DOI: 10.1111/j.1551-2916.2006.01382.x. http://dx.doi.org/10.1111/j.1551-2916.2006.01382.x10.1111/j.1551-2916.2006.01382.xSuche in Google Scholar
[35] Li, J. Z., Wei, Y. X., Liu, G. G., Qi, Y., Tian, P., Li, B., He, Y. L., & Liu, Z. M. (2011). Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeolite topology. Catalysis Today, 171, 221–228. DOI: 10.1016/j.cattod.2011.02.027. http://dx.doi.org/10.1016/j.cattod.2011.02.02710.1016/j.cattod.2011.02.027Suche in Google Scholar
[36] Lopez-Orozco, S., Inayat, A., Schwab, A., Selvam, T., & Schwieger, W. (2011). Zeolitic materials with hierarchical porous structures. Advanced Materials, 23, 2602–2615. DOI: 10.1002/adma.201100462. http://dx.doi.org/10.1002/adma.20110046210.1002/adma.201100462Suche in Google Scholar PubMed
[37] Louis, B., Ocampo, F., Yun, H. S., Tessonnier, J. P., & Maciel Pereira, M. (2010). Hierarchical pore ZSM-5 zeolite structures: From micro-to macro-engineering of structured catalysts. Chemical Engineering Journal, 161, 397–402. DOI: 10.1016/j.cej.2009.09.041. http://dx.doi.org/10.1016/j.cej.2009.09.04110.1016/j.cej.2009.09.041Suche in Google Scholar
[38] McCann, D. M., Lesthaeghe, D., Kletnieks, P. W., Guenther, D. R., Hayman, M. J., Van Speybroeck, V., Waroquier, M., & Haw, J. F. (2008). A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment. Angewandte Chemie International Edition, 47, 5179–5182. DOI: 10.1002/anie.200705453. http://dx.doi.org/10.1002/anie.20070545310.1002/anie.200705453Suche in Google Scholar PubMed
[39] Meng, T., Mao, D. S., Guo, Q. S., & Lu, G. Z. (2012). The effect of crystal sizes of HZSM-5 zeolites in ethanol conversion to propylene. Catalysis Communications, 21, 52–57. DOI: 10.1016/j.catcom.2012.01.030. http://dx.doi.org/10.1016/j.catcom.2012.01.03010.1016/j.catcom.2012.01.030Suche in Google Scholar
[40] Menges, M., & Kraushaar-Czarnetzki, B. (2012). Kinetics of methanol to olefins over AlPO4-bound ZSM-5 extrudates in a two-stage unit with dimethyl ether pre-reactor. Microporous and Mesoporous Materials, 164, 172–181. DOI: 10.1016/j.micromeso.2012.07.012. http://dx.doi.org/10.1016/j.micromeso.2012.07.01210.1016/j.micromeso.2012.07.012Suche in Google Scholar
[41] Mitchell, S., Michels, N. L., Kunze, K., & Pérez-Ramirez, J. (2012). Visualisation of hierarchically structured zeolite bodies from macro to nano length scales. Nature Chemistry, 4, 825–831. DOI: 10.1038/nchem.1403. http://dx.doi.org/10.1038/nchem.140310.1038/nchem.1403Suche in Google Scholar
[42] Mitchell, S., Michels, N. L., & Pérez-Ramírez, J. (2013). From powder to technical body: the undervalued science of catalyst scale up. Chemical Society Reviews, 2013, 6094–6112. DOI: 10.1039/c3cs60076a. http://dx.doi.org/10.1039/c3cs60076a10.1039/c3cs60076aSuche in Google Scholar
[43] Möller, K. P., Böhringer, W., Schnitzler, A. E., van Steen, E., & O’Connor, C. T. (1999). The use of a jet loop reactor to study the effect of crystal size and the co-feeding of olefins and water on the conversion of methanol over HZSM-5. Microporous and Mesoporous Materials, 29, 127–144. DOI: 10.1016/s1387-1811(98)00326-6. http://dx.doi.org/10.1016/S1387-1811(98)00326-610.1016/S1387-1811(98)00326-6Suche in Google Scholar
[44] Mores, D., Stavitski, E., Kox, M. H. F., Kornatowski, J., Olsbye, U., & Weckhuysen, B. M. (2008). Space- and timeresolved in-situ spectroscopy on the coke formation in molecular sieves: Methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34. Chemistry — A European Journal, 14, 11320–11327. DOI: 10.1002/chem.200801293. http://dx.doi.org/10.1002/chem.20080129310.1002/chem.200801293Suche in Google Scholar PubMed
[45] Ocampo, F., Cunha, J. A., de Lima Santos, M. R., Tessonnier, J. P., Pereira, M. M., & Louis, B. (2010). Synthesis of zeolite crystals with unusual morphology: Application in acid catalysis. Applied Catalysis A: General, 390, 102–109. DOI: 10.1016/j.apcata.2010.09.037. http://dx.doi.org/10.1016/j.apcata.2010.09.03710.1016/j.apcata.2010.09.037Suche in Google Scholar
[46] Olsbye, U., Bjørgen, M., Svelle, S., Lillerud, K. P., & Kolboe, S. (2005). Mechanistic insight into the methanol-tohydrocarbons reaction. Catalysis Today, 106, 108–111. DOI: 10.1016/j.cattod.2005.07.135. http://dx.doi.org/10.1016/j.cattod.2005.07.13510.1016/j.cattod.2005.07.135Suche in Google Scholar
[47] Olsbye, U., Svelle, S., Bjørgen, M., Beato, P., Janssens, T. V. W., Joensen, F., Bordiga, S., & Lillerud, K. P. (2012). Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity. Angewandte Chemie International Edition, 51, 5810–5831. DOI: 10.1002/anie.201103657. http://dx.doi.org/10.1002/anie.20110365710.1002/anie.201103657Suche in Google Scholar PubMed
[48] Pangarkar, K., Schildhauer, T. J., Ruud van Ommen, J., Nijenhuis, J., Kapteijn, F., & Moulijn, J. A. (2008). Structured packings for multiphase catalytic reactors. Industrial & Engineering Chemistry Research, 47, 3720–3751. DOI: 10.1021/ie800067r. http://dx.doi.org/10.1021/ie800067r10.1021/ie800067rSuche in Google Scholar
[49] Park, J. W., Kim, S. J., Seo, M. G., Kim, S. Y., Sugi, Y., & Seo, G. (2008a). Product selectivity and catalytic deactivation of MOR zeolites with different acid site densities in methanol-to-olefin (MTO) reactions. Applied Catalysis A: General, 349, 76–85. DOI: 10.1016/j.apcata.2008.07.006. http://dx.doi.org/10.1016/j.apcata.2008.07.00610.1016/j.apcata.2008.07.006Suche in Google Scholar
[50] Park, J. W., Lee, J. Y., Kim, K. S., Hong, S. B., & Seo, G. (2008b). Effects of cage shape and size of 8-membered ring molecular sieves on their deactivation in methanol-to-olefin (MTO) reactions. Applied Catalysis A: General, 339, 36–44. DOI: 10.1016/j.apcata.2008.01.005. http://dx.doi.org/10.1016/j.apcata.2008.01.00510.1016/j.apcata.2008.01.005Suche in Google Scholar
[51] Patcas, F. C. (2005). The methanol-to-olefins conversion over zeolite-coated ceramic foams. Journal of Catalysis, 231, 194–200. DOI: 10.1016/j.jcat.2005.01.016. http://dx.doi.org/10.1016/j.jcat.2005.01.01610.1016/j.jcat.2005.01.016Suche in Google Scholar
[52] Perdana, I., Creaser, D., Lindmark, J., & Hedlund, J. (2010). Influence of NOx adsorbed species on component permeation through ZSM-5 membranes. Journal of Membrane Science, 349, 83–89. DOI: 10.1016/j.memsci.2009.11.030. http://dx.doi.org/10.1016/j.memsci.2009.11.03010.1016/j.memsci.2009.11.030Suche in Google Scholar
[53] Rahimi, N., & Karimzadeh, R. (2011). Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review. Applied Catalysis A: General, 398, 1–17. DOI: 10.1016/j.apcata.2011.03.009. http://dx.doi.org/10.1016/j.apcata.2011.03.00910.1016/j.apcata.2011.03.009Suche in Google Scholar
[54] Ren, T., Patel, M. K., & Blok, K. (2008). Steam cracking and methane to olefins: Energy use, CO2 emissions and production costs. Energy, 33, 817–833. DOI: 10.1016/j.energy.2008.01.002. 10.1016/j.energy.2008.01.002Suche in Google Scholar
[55] Ren, T., Daniëls, B., Patel, M. K., & Blok, K. (2009). Petrochemicals from oil, natural gas, coal and biomass: Production costs in 2030–2050. Resources, Conservation and Recycling, 53, 653–663. DOI: 10.1016/j.resconrec.2009.04.016. http://dx.doi.org/10.1016/j.resconrec.2009.04.01610.1016/j.resconrec.2009.04.016Suche in Google Scholar
[56] Rownaghi, A. A., Rezaei, F., & Hedlund, J. (2011). Yield of gasoline-range hydrocarbons as a function of uniform ZSM-5 crystal size. Catalysis Communications, 14, 37–41. DOI:10.1016/j.catcom.2011.07.015. http://dx.doi.org/10.1016/j.catcom.2011.07.01510.1016/j.catcom.2011.07.015Suche in Google Scholar
[57] Sano, T., Kiyozumi, Y., & Shin, S. (1992). Synthesis of light olefins from methanol using ZSM-5 type zeolite catalysts. Journal of the Japan Petroleum Institute, 35, 429–440. http://dx.doi.org/10.1627/jpi1958.35.42910.1627/jpi1958.35.429Suche in Google Scholar
[58] Seijger, G. B. F., Oudshoorn, O. L., van Kooten, W. E. J., Jansen, J. C., van Bekkum, H., van den Bleek, C. M., & Calis, H. P. A. (2000). In situ synthesis of binderless ZSM-5 zeolitic coatings on ceramic foam supports. Microporous and Mesoporous Materials, 39, 195–204. DOI: 10.1016/s1387-1811(00)00196-7. http://dx.doi.org/10.1016/S1387-1811(00)00196-710.1016/S1387-1811(00)00196-7Suche in Google Scholar
[59] Shan, Z., van Kooten, W. E. J., Oudshoorn, O. L., Jansen, J. C., van Bekkum, H., van den Bleek, C. M., & Calis, H. P. A. (2000). Optimization of the preparation of binderless ZSM-5 coatings on stainless steel monoliths by in situ hydrothermal synthesis. Microporous and Mesoporous Materials, 34, 81–91. DOI: 10.1016/s1387-1811(99)00161-4. http://dx.doi.org/10.1016/S1387-1811(99)00161-410.1016/S1387-1811(99)00161-4Suche in Google Scholar
[60] Stöcker, M. (1999). Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous and Mesoporous Materials, 29, 3–48. DOI: 10.1016/s1387-1811(98)00319-9. http://dx.doi.org/10.1016/S1387-1811(98)00319-910.1016/S1387-1811(98)00319-9Suche in Google Scholar
[61] Stuecker, J. N., Miller, J. E., Ferrizz, R. E., Mudd, J. E., & Cesarano, J., III. (2004). Advanced support structures for enhanced catalytic activity. Industrial & Engineering Chemistry Research, 43, 51–55. DOI: 10.1021/ie030291v. http://dx.doi.org/10.1021/ie030291v10.1021/ie030291vSuche in Google Scholar
[62] Svelle, S., Røning, P. O., & Kolboe, S. (2004). Kinetic studies of zeolite-catalyzed methylation reactions: 1. Coreaction of [12C]ethene and [13C]methanol. Journal of Catalysis, 224, 115–123. DOI: 10.1016/j.jcat.2004.02.022. http://dx.doi.org/10.1016/j.jcat.2004.02.02210.1016/j.jcat.2004.02.022Suche in Google Scholar
[63] Svelle, S., Røning, P. O., Olsbye, U., & Kolboe, S. (2005). Kinetic studies of zeolite-catalyzed methylation reactions. Part 2. Co-reaction of [12C]propene or [12C]n-butene and [13C]methanol. Journal of Catalysis, 234, 385–400. DOI: 10.1016/j.jcat.2005.06.028. http://dx.doi.org/10.1016/j.jcat.2005.06.02810.1016/j.jcat.2005.06.028Suche in Google Scholar
[64] Tago, T., Iwakai, K., Morita, K., Tanaka, K., & Masuda, T. (2005). Control of acid-site location of ZSM-5 zeolite membrane and its application to the MTO reaction. Catalysis Today, 105, 662–666. DOI: 10.1016/j.cattod.2005.06.009. http://dx.doi.org/10.1016/j.cattod.2005.06.00910.1016/j.cattod.2005.06.009Suche in Google Scholar
[65] Taheri Najafabadi, A., Fatemi, S., Sohrabi, M., & Salmasi, M. (2012). Kinetic modeling and optimization of the operating condition of MTO process on SAPO-34 catalyst. Journal of Industrial and Engineering Chemistry, 18, 29–37. DOI: 10.1016/j.jiec.2011.11.088. http://dx.doi.org/10.1016/j.jiec.2011.11.08810.1016/j.jiec.2011.11.088Suche in Google Scholar
[66] Takahashi, A., Xia, W., Nakamura, I., Shimada, H., & Fujitani, T. (2012). Effects of added phosphorus on conversion of ethanol to propylene over ZSM-5 catalysts. Applied Catalysis A: General, 423–424, 162–167. DOI: 10.1016/j.apcata.2012.02.029. http://dx.doi.org/10.1016/j.apcata.2012.02.02910.1016/j.apcata.2012.02.029Suche in Google Scholar
[67] Total Petrochemicals (2008). MTO/OCP: a strategic research project. Testing innovative processes for making plastics. Brussels, Belgium: Total Petrochemicals. Suche in Google Scholar
[68] Ulla, M. A., Mallada, R., Coronas, J., Gutierrez, L., Miró, E., & Santamaría, J. (2003). Synthesis and characterization of ZSM-5 coatings onto cordierite honeycomb supports. Applied Catalysis A: General, 253, 257–269. DOI: 10.1016/s0926-860x(03)00498-8. http://dx.doi.org/10.1016/S0926-860X(03)00498-810.1016/S0926-860X(03)00498-8Suche in Google Scholar
[69] Valle, B., Alonso, A., Atutxa, A., Gayubo, A. G., & Bilbao, J. (2005). Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process. Catalysis Today, 106, 118–122. DOI: 10.1016/j.cattod.2005.07.132. http://dx.doi.org/10.1016/j.cattod.2005.07.13210.1016/j.cattod.2005.07.132Suche in Google Scholar
[70] Van Noyen, J., De Wilde, A., Schroeven, M., Mullens, S., & Luyten, J. (2012). Ceramic processing techniques for catalyst design: Formation, properties, and catalytic example of ZSM-5 on 3-dimensional fiber deposition support structures. International Journal of Applied Ceramic Technology, 9, 902–910. DOI: 10.1111/j.1744-7402.2012.02781.x. http://dx.doi.org/10.1111/j.1744-7402.2012.02781.x10.1111/j.1744-7402.2012.02781.xSuche in Google Scholar
[71] Wender, I. (1996). Reactions of synthesis gas. Fuel Processing Technology, 48, 189–297. DOI: 10.1016/s0378-3820(96)01048-x. http://dx.doi.org/10.1016/S0378-3820(96)01048-X10.1016/S0378-3820(96)01048-XSuche in Google Scholar
[72] Westgård Erichsen, M., Svelle, S., & Olsbye, U. (2013). HSAPO-5 as methanol-to-olefins (MTO) model catalyst: Towards elucidating the effects of acid strength. Journal of Catalysis, 298, 94–101. DOI: 10.1016/j.jcat.2012.11.004. http://dx.doi.org/10.1016/j.jcat.2012.11.00410.1016/j.jcat.2012.11.004Suche in Google Scholar
[73] Wu, X. C., & Anthony, R. G. (2001). Effect of feed composition on methanol conversion to light olefins over SAPO-34. Applied Catalysis A: General, 218, 241–250. DOI: 10.1016/s0926-860x(01)00651-2. http://dx.doi.org/10.1016/S0926-860X(01)00651-210.1016/S0926-860X(01)00651-2Suche in Google Scholar
[74] Wu, W. Z., Guo, W. Y., Xiao, W., & Luo, M. (2011). Dominant reaction pathway for methanol conversion to propene over high silicon H-ZSM-5. Chemical Engineering Science, 66, 4722–4732. DOI: 10.1016/j.ces.2011.06.036. http://dx.doi.org/10.1016/j.ces.2011.06.03610.1016/j.ces.2011.06.036Suche in Google Scholar
[75] Yang, H. Q., Liu, Z. C., Gao, H. X., & Xie, Z. K. (2010). Synthesis and catalytic performances of hierarchical SAPO-34 monolith. Journal of Materials Chemistry, 20, 3227–3231. DOI: 10.1039/b924736j. http://dx.doi.org/10.1039/b924736j10.1039/b924736jSuche in Google Scholar
[76] Yang, Y., Sun, C., Du, J. M., Yue, Y. H., Hua, W. M., Zhang, C. L., Shen, W., & Xu, H. (2012). The synthesis of endurable B-Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction. Catalysis Communications, 24, 44–47. DOI: 10.1016/j.catcom.2012.03.013. http://dx.doi.org/10.1016/j.catcom.2012.03.01310.1016/j.catcom.2012.03.013Suche in Google Scholar
[77] Yao, J. F., Zeng, C. F., Zhang, L. X., & Xu, N. P. (2008). Vapor phase transport synthesis of SAPO-34 films on cordierite honeycombs. Materials Chemistry and Physics, 112, 637–640. DOI: 10.1016/j.matchemphys.2008.06.019. http://dx.doi.org/10.1016/j.matchemphys.2008.06.01910.1016/j.matchemphys.2008.06.019Suche in Google Scholar
[78] Yilmaz, B., & Müller, U. (2009). Catalytic applications of zeolites in chemical industry. Topics in Catalysis, 52, 888–895. DOI: 10.1007/s11244-009-9226-0. http://dx.doi.org/10.1007/s11244-009-9226-010.1007/s11244-009-9226-0Suche in Google Scholar
[79] Zamaniyan, A., Mortazavi, Y., Khodadadi, A. A., & Manafi, H. (2010). Tube fitted bulk monolithic catalyst as novel structured reactor for gas-solid reactions. Applied Catalysis A: General, 385, 214–223. DOI: 10.1016/j.apcata.2010.07.014. http://dx.doi.org/10.1016/j.apcata.2010.07.01410.1016/j.apcata.2010.07.014Suche in Google Scholar
[80] Zamaro, J. M., Ulla, M. A., & Miró, E. (2005). Zeolite washcoating onto cordierite honeycomb reactors for environmental applications. Chemical Engineering Journal, 106, 25–33. DOI: 10.1016/j.cej.2004.11.003. http://dx.doi.org/10.1016/j.cej.2004.11.00310.1016/j.cej.2004.11.003Suche in Google Scholar
[81] Zamaro, J. M., & Miró, E. E. (2010). Novel binderless zeolite-coated monolith reactor for environmental applications. Chemical Engineering Journal, 165, 701–708. DOI: 10.1016/j.cej.2010.10.014. http://dx.doi.org/10.1016/j.cej.2010.10.01410.1016/j.cej.2010.10.014Suche in Google Scholar
[82] Zampieri, A., Kullmann, S., Selvam, T., Bauer, J., Schwieger, W., Sieber, H., Fey, T., & Greil, P. (2006). Bioinspired rattanderived SiSiC/zeolite monoliths: Preparation and characterisation. Microporous and Mesoporous Materials, 90, 162–174. DOI: 10.1016/j.micromeso.2005.10.049. http://dx.doi.org/10.1016/j.micromeso.2005.10.04910.1016/j.micromeso.2005.10.049Suche in Google Scholar
[83] Zhu, J., Fan, Y. Q., & Xu, N. P. (2011). Modified dipcoating method for preparation of pinhole-free ceramic membranes. Journal of Membrane Science, 367, 14–20. DOI: 10.1016/j.memsci.2010.10.024. http://dx.doi.org/10.1016/j.memsci.2010.10.02410.1016/j.memsci.2010.10.024Suche in Google Scholar
[84] Zhuang, Y. Q., Gao, X., Zhu, Y. P., & Luo, Z. H. (2012). CFD modeling of methanol to olefins process in a fixed-bed reactor. Powder Technology, 221, 419–430. DOI: 10.1016/j.powtec. 2012.01.041. http://dx.doi.org/10.1016/j.powtec.2012.01.04110.1016/j.powtec.2012.01.041Suche in Google Scholar
© 2014 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Environmental catalysis — Topical issue
- Structured catalysts for methanol-to-olefins conversion: a review
- Diesel soot combustion catalysts: review of active phases
- State of the art in catalytic oxidation of chlorinated volatile organic compounds
- Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins
- Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation
- Valorisation of bio-oil resulting from fast pyrolysis of wood
- Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x MnxO in cellulose conversion
- Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process
- Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity
- Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)
- Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode
- CdS/TiO2 composite films for methylene blue photodecomposition under visible light irradiation and non-photocorrosion of cadmium sulfide
- Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate
- Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air
- Solid waste decontamination by thermal desorption and catalytic oxidation methods
Artikel in diesem Heft
- Environmental catalysis — Topical issue
- Structured catalysts for methanol-to-olefins conversion: a review
- Diesel soot combustion catalysts: review of active phases
- State of the art in catalytic oxidation of chlorinated volatile organic compounds
- Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins
- Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation
- Valorisation of bio-oil resulting from fast pyrolysis of wood
- Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x MnxO in cellulose conversion
- Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process
- Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity
- Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)
- Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode
- CdS/TiO2 composite films for methylene blue photodecomposition under visible light irradiation and non-photocorrosion of cadmium sulfide
- Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate
- Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air
- Solid waste decontamination by thermal desorption and catalytic oxidation methods