Abstract
For air-cleaning, TiO2 photocatalysis represents one of the very efficient advanced oxidation processes (AOPs) that can decompose chemically and microbiologically stable volatile organic compounds (VOCs). However, the photocatalytic activity of nanocrystalline TiO2 powders can be significantly suppressed due to TiO2’s poor adsorption characteristics for organic compounds and its relatively low surface area. The present study sought to solve this problem by immobilising nanocrystalline TiO2 in the porous silicate substrate. Two titania sources were used in an aqueous solution form: a suspension from a TiO2 producer in Slovenia, Cinkarna Celje (CC-40) and a TiO2 sol, prepared by a low-temperature synthesis developed at the University of Nova Gorica (TiO2-UNG). Two different types of mesoporous silica were used: SBA-15 with an ordered hexagonal pore arrangement and KIL-2 with disordered inter-particle mesoporosity. The structural characteristics, adsorption properties and photocatalytic activity of catalysts deposited on aluminium plates as thin films were investigated. CC-40 exhibited higher adsorption and photocatalytic activity than TiO2-UNG due to the greater quantity of Ti-OH groups on its surface. The addition of mesoporous silica led to higher adsorption and catalytic activity for both TiO2 sources. SBA-15 was more efficient than KIL-2.
[1] Adams, M., Skillen, N., McCullagh, C., & Robertson, P. K. J. (2013). Development of a doped titania immobilised thin film multi tubular photoreactor. Applied Catalysis B: Environmental, 130–131, 99–105. DOI: 10.1016/j.apcatb.2012.10.008. http://dx.doi.org/10.1016/j.apcatb.2012.10.00810.1016/j.apcatb.2012.10.008Suche in Google Scholar
[2] Arıer, Ü. Ö. A., & Tepehan, F. Z. (2011). Influence of heat treatment on the particle size of nanobrookite TiO2 thin films produced by sol-gel method. Surface & Coatings Technology, 206, 37–42. DOI: 10.1016/j.surfcoat.2011.06.039. http://dx.doi.org/10.1016/j.surfcoat.2011.06.03910.1016/j.surfcoat.2011.06.039Suche in Google Scholar
[3] Augugliaro, V., Coluccia, S., Loddo, V., Marchese, L., Martra, G., Palmisano, L., & Schiavello, M. (1999). Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: mechanistic aspects and FT-IR investigation. Applied Catalysis B: Environmental, 20, 15–27. DOI: 10.1016/s0926-3373(98)00088-5. http://dx.doi.org/10.1016/S0926-3373(98)00088-510.1016/S0926-3373(98)00088-5Suche in Google Scholar
[4] Çamurlu, H. E., Kesmez, Ö., Burunkaya, E., Kiraz, N., Yeşil, Z., Asiltürk, M., & Arpaç, E. (2012). Sol-gel thin films with anti-reflective and self-cleaning properties. Chemical Papers, 66, 461–471. DOI: 10.2478/s11696-012-0144-4. http://dx.doi.org/10.2478/s11696-012-0144-410.2478/s11696-012-0144-4Suche in Google Scholar
[5] Chang, M.W., Chen, T. S., & Chern, J. M. (2008). Initial degradation rate of p-nitrophenol in aqueous solution by Fenton reaction. Industrial & Engineering Chemistry Research, 47, 8533–8541. DOI: 10.1021/ie8003013. http://dx.doi.org/10.1021/ie800301310.1021/ie8003013Suche in Google Scholar
[6] Chen, S. Z., Zhang, P. Y., Zhu, W. P., Chen, L., & Xu, S. M. (2006). Deactivation of TiO2 photocatalytic films loaded on aluminium: XPS and AFM analyses. Applied Surface Science, 252, 7532–7538. DOI: 10.1016/j.apsusc.2005.09.023. http://dx.doi.org/10.1016/j.apsusc.2005.09.02310.1016/j.apsusc.2005.09.023Suche in Google Scholar
[7] Černigoj, U., Lavrenčič Štangar, U., Trebše, P., Opara Krašovec, U., & Gross, S. (2006). Photocatalytically active TiO2 thin films produced by surfactant-assisted sol-gel processing. Thin Solid Films, 495, 327–332. DOI: 10.1016/j.tsf.2005.08.240. http://dx.doi.org/10.1016/j.tsf.2005.08.24010.1016/j.tsf.2005.08.240Suche in Google Scholar
[8] Di Paola, A., Bellardita, M., Palmisano, L., Barbieriková, Z., & Brezová, V. (2014). Influence of crystallinity and OH surface density on the photocatalytic activity of TiO2 powders. Journal of Photochemistry and Photobiology A: Chemistry, 273, 59–67. DOI: 10.1016/j.jphotochem.2013.09.008. http://dx.doi.org/10.1016/j.jphotochem.2013.09.00810.1016/j.jphotochem.2013.09.008Suche in Google Scholar
[9] Folli, A., Pade, C., Hansen, T. B., De Marco, T., & Macphee, D. E. (2012). TiO2 photocatalysis in cementitious systems: Insights into self-cleaning and depollution chemistry. Cement and Concrete Research, 42, 539–548. DOI: 10.1016/j.cemconres.2011.12.001. http://dx.doi.org/10.1016/j.cemconres.2011.12.00110.1016/j.cemconres.2011.12.001Suche in Google Scholar
[10] Fu, P., Luan, Y., & Dai, X. (2004). Preparation of activated carbon fibers supported TiO2 photocatalyst and evaluation of its photocatalytic reactivity. Journal of Molecular Catalysis A: Chemical, 221, 81–88. DOI: 10.1016/j.molcata.2004.06.018. http://dx.doi.org/10.1016/j.molcata.2004.06.01810.1016/j.molcata.2004.06.018Suche in Google Scholar
[11] Janik, J. M., Pytasz, G., & Stanek, T. (1969). An infra-red study of crystallo-hydrates. Acta Physica Polonica, 35, 997–1008. Suche in Google Scholar
[12] Kočí, K., Obalová, L., Matějová, L., Plachá, D., Lacný, Z., Jirkovský, J., & Šolcová, O. (2009). Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 89, 494–502. DOI: 10.1016/j.apcatb.2009.01.010. http://dx.doi.org/10.1016/j.apcatb.2009.01.01010.1016/j.apcatb.2009.01.010Suche in Google Scholar
[13] Li, G., Richter, C. P., Milot, R. L., Cai, L., Schmuttenmaer, C. A., Crabtree, R. H., Brudvig, G. W., & Batista, V. S. (2009). Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells. Dalton Transactions, 2009, 10078–10085. DOI: 10.1039/b908686b. http://dx.doi.org/10.1039/b908686b10.1039/b908686bSuche in Google Scholar
[14] Mazaj, M., Costacurta, S., Zabukovec Logar, N., Mali, G., Novak Tušar, N., Innocenzi, P., Malfatti, L., Thibault-Starzyk, F., Amenitsch, H., Kaučič, V., & Soler-Illia, G. J. A. A. (2008). Mesoporous aluminophosphate thin films with cubic pore arrangement. Langmuir, 24, 6220–6225. DOI: 10.1021/la7035746. http://dx.doi.org/10.1021/la703574610.1021/la7035746Suche in Google Scholar
[15] Novotná, P., Zita, J., Krýsa, J., Kalousek, V., & Rathouský, J. (2008). Two-component transparent TiO2/SiO2 and TiO2/PDMS films as efficient photocatalysts for environmental cleaning. Applied Catalysis B: Environmental, 79, 179–185. DOI: 10.1016/j.apcatb.2007.10.012. http://dx.doi.org/10.1016/j.apcatb.2007.10.01210.1016/j.apcatb.2007.10.012Suche in Google Scholar
[16] Novotna, P., Krysa, J., Maixner, J., Kluson, P., & Novak, P. (2010). Photocatalytic activity of sol-gel TiO2 thin films deposited on soda lime glass and soda lime glass precoated with a SiO2 layer. Surface & Coatings Technology, 204, 2570–2575. DOI: 10.1016/j.surfcoat.2010.01.043. http://dx.doi.org/10.1016/j.surfcoat.2010.01.04310.1016/j.surfcoat.2010.01.043Suche in Google Scholar
[17] Prieto, O., Fermoso, J., & Irusta, R. (2007). Photocatalytic degradation of toluene in air using a fluidized bed photoreactor. International Journal of Photoenergy, 2007. DOI: 10.1155/2007/32859. 10.1155/2007/32859Suche in Google Scholar
[18] Sorolla M. G., II, Dalida, M. L., Khemthong, P., & Grisdanurak, N. (2012). Photocatalytic degradation of paraquat using nano-sized Cu-TiO2/SBA-15 under UV and visible light. Journal of Environmental Sciences, 24, 1125–1132. DOI: 10.1016/s1001-0742(11)60874-7. http://dx.doi.org/10.1016/S1001-0742(11)60874-710.1016/S1001-0742(11)60874-7Suche in Google Scholar
[19] Subramanian, A., & Wang, H. W. (2012). Effect of hydroxyl group attachment on TiO2 films for dye-sensitized solar cells. Applied Surface Science, 258, 7833–7838. DOI: 10.1016/j.apsusc.2012.04.069. http://dx.doi.org/10.1016/j.apsusc.2012.04.06910.1016/j.apsusc.2012.04.069Suche in Google Scholar
[20] Štangar, U. L., Černigoj, U., Trebše, P., Maver, K., & Gross, S. (2006). Photocatalytic TiO2 coatings: Effect of substrate and template. Monatshefte für Chemie, 137, 647–655. DOI: 10.1007/s00706-006-0443-y. http://dx.doi.org/10.1007/s00706-006-0443-y10.1007/s00706-006-0443-ySuche in Google Scholar
[21] Šuligoj, A., Černigoj, U., & Lavrenčič Štangar, U. (2012). SI Patent No. 23585. Ljubljana, Slovenia: Slovenian Intellectual Property Office. Suche in Google Scholar
[22] Taguchi, A., & Schüth, F. (2005). Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 77, 1–45. DOI: 10.1016/j.micromeso.2004.06.030. http://dx.doi.org/10.1016/j.micromeso.2004.06.03010.1016/j.micromeso.2004.06.030Suche in Google Scholar
[23] Taranto, J., Frochot, D., & Pichat, P. (2009). Photocatalytic air purification: Comparative efficacy and pressure drop of a TiO2-coated thin mesh and a honeycomb monolith at high air velocities using a 0.4 m3 close-loop reactor. Separation and Purification Technology, 67, 187–193. DOI: 10.1016/j.seppur.2009.03.017. http://dx.doi.org/10.1016/j.seppur.2009.03.01710.1016/j.seppur.2009.03.017Suche in Google Scholar
[24] Tasbihi, M., Lavrenčič Štangar, U., Černigoj, U., & Kogej, K. (2009). Low-temperature synthesis and characterization of anatase TiO2 powders from inorganic precursors. Photochemical & Photobiological Sciences, 8, 719–725. DOI: 10.1039/b817472e. http://dx.doi.org/10.1039/b817472e10.1039/b817472eSuche in Google Scholar PubMed
[25] Tasbihi, M., Lavrenčič Štangar, U., Sever Škapin, A., Ristić, A., Kaučič, V., & Novak Tušar, N. (2010). Titania-containing mesoporous silica powders: Structural properties and photocatalytic activity towards isopropanol degradation. Journal of Photochemistry and Photobiology A: Chemistry, 216, 167–178. DOI: 10.1016/j.jphotochem.2010.07.011. http://dx.doi.org/10.1016/j.jphotochem.2010.07.01110.1016/j.jphotochem.2010.07.011Suche in Google Scholar
[26] Tasbihi, M., Lavrenčič Štangar, U., Černigoj, U., Jirkovský, J., Bakardjieva, S., & Novak Tušar, N. (2011). Photocatalytic oxidation of gaseous toluene on titania/mesoporous silica powders in a fluidized-bed reactor. Catalysis Today, 161, 181–188. DOI: 10.1016/j.cattod.2010.08.015. http://dx.doi.org/10.1016/j.cattod.2010.08.01510.1016/j.cattod.2010.08.015Suche in Google Scholar
[27] Tasbihi, M., Kete, M., Raichur, A. M., Novak Tušar, N., & Lavrenčič Štangar, U. (2012). Photocatalytic degradation of gaseous toluene by using immobilized titania/silica on aluminum sheets. Environmental Science and Pollution Research, 19, 3735–3742. DOI: 10.1007/s11356-012-0864-6. http://dx.doi.org/10.1007/s11356-012-0864-610.1007/s11356-012-0864-6Suche in Google Scholar PubMed
[28] Wang, J., Liu, X., Li, R., Qiao, P., Xiao, L., & Fan, J. (2012). TiO2 nanoparticles with increased surface hydroxyl groups and their improved photocatalytic activity. Catalysis Communications, 19, 96–99. DOI: 10.1016/j.catcom.2011.12.028. http://dx.doi.org/10.1016/j.catcom.2011.12.02810.1016/j.catcom.2011.12.028Suche in Google Scholar
[29] Ye, S. Y., Tian, Q. M., Song, X. L., & Luo, S. C. (2009). Photoelectrocatalytic degradation of ethylene by a combination of TiO2 and activated carbon felts. Journal of Photochemistry and Photobiology A: Chemistry, 208, 27–35. DOI: 10.1016/j.jphotochem.2009.08.001. http://dx.doi.org/10.1016/j.jphotochem.2009.08.00110.1016/j.jphotochem.2009.08.001Suche in Google Scholar
[30] Ye, S. Y., Li, M. B., Song, X. L., Luo, S. C., & Fang, Y. C. (2011). Enhanced photocatalytic decomposition of gaseous ozone in cold storage environments using a TiO2/ACF film. Chemical Engineering Journal, 167, 28–34. DOI: 10.1016/j.cej.2010.11.102. http://dx.doi.org/10.1016/j.cej.2010.11.10210.1016/j.cej.2010.11.102Suche in Google Scholar
[31] Zita, J., Krýsa, J., & Mills, A. (2009). Correlation of oxidative and reductive dye bleaching on TiO2 photocatalyst films. Journal of Photochemistry and Photobiology A: Chemistry, 203, 119–124. DOI: 10.1016/j.jphotochem.2008.12.029. http://dx.doi.org/10.1016/j.jphotochem.2008.12.02910.1016/j.jphotochem.2008.12.029Suche in Google Scholar
[32] Zita, J., Krýsa, J., Černigoj, U., Lavrenčič Štangar, U., Jirkovský, J., & Rathouský, J. (2011). Photocatalytic properties of different TiO2 thin films of various porosity and titania loading. Catalysis Today, 161, 29–34. DOI: 10.1016/j.cattod.2010.11.084. http://dx.doi.org/10.1016/j.cattod.2010.11.08410.1016/j.cattod.2010.11.084Suche in Google Scholar
© 2014 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Environmental catalysis — Topical issue
- Structured catalysts for methanol-to-olefins conversion: a review
- Diesel soot combustion catalysts: review of active phases
- State of the art in catalytic oxidation of chlorinated volatile organic compounds
- Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins
- Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation
- Valorisation of bio-oil resulting from fast pyrolysis of wood
- Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x MnxO in cellulose conversion
- Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process
- Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity
- Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)
- Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode
- CdS/TiO2 composite films for methylene blue photodecomposition under visible light irradiation and non-photocorrosion of cadmium sulfide
- Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate
- Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air
- Solid waste decontamination by thermal desorption and catalytic oxidation methods
Artikel in diesem Heft
- Environmental catalysis — Topical issue
- Structured catalysts for methanol-to-olefins conversion: a review
- Diesel soot combustion catalysts: review of active phases
- State of the art in catalytic oxidation of chlorinated volatile organic compounds
- Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins
- Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation
- Valorisation of bio-oil resulting from fast pyrolysis of wood
- Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x MnxO in cellulose conversion
- Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process
- Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity
- Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)
- Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode
- CdS/TiO2 composite films for methylene blue photodecomposition under visible light irradiation and non-photocorrosion of cadmium sulfide
- Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate
- Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air
- Solid waste decontamination by thermal desorption and catalytic oxidation methods