Abstract
The effect of Zn on the catalytic performance of ZSM-5 in the methanol-to-olefin conversion was investigated. The samples were characterised by X-ray diffraction, N2 adsorption, FTIR, temperature-programmed desorption of ammonia and water, and Py-IR. The experimental results revealed Znmodified ZSM-5 to show a lower selectivity to light olefin at the higher reaction temperature of 520°C but a higher selectivity to light olefin at lower temperatures. As a comparison, the catalytic performance of Ca-modified ZSM-5 for the methanol conversion is also given. From the above results, it is concluded that Zn may play another role in the methanol conversion in addition to tuning the surface acidic property after modification.
[1] Al-Jarallah, A. M., El-Nafaty, U. A., & Abdillahi, M. M. (1997). Effects of metal impregnation on the activity, selectivity and deactivation of a high silica MFI zeolite when converting methanol to light alkenes. Applied Catalysis A: General, 154, 117–127. DOI: 10.1016/s0926-860x(96)00379-1. http://dx.doi.org/10.1016/S0926-860X(96)00379-110.1016/S0926-860X(96)00379-1Suche in Google Scholar
[2] Anthony, R. G., & Singh, B. B. (1980). Kinetic analysis of complex reaction systems-methanol conversion to low molecular weight olefins. Chemical Engineering Communications, 6, 215–224. DOI: 10.1080/00986448008912531. http://dx.doi.org/10.1080/0098644800891253110.1080/00986448008912531Suche in Google Scholar
[3] Bjørgen, M., Svelle, S., Joensen, F., Nerlov, J., Kolboe, S., Bonino, F., Palumbo, L., Bordiga, S., & Olsbye, U. (2007). Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. Journal of Catalysis, 249, 195–207. DOI: 10.1016/j.jcat.2007.04.006. http://dx.doi.org/10.1016/j.jcat.2007.04.00610.1016/j.jcat.2007.04.006Suche in Google Scholar
[4] Bleken, F. L., Chavan, S., Olsbye, U., Boltz, M., Ocampo, F., & Louis, B. (2012). Conversion of methanol into light olefins over ZSM-5 zeolite: Strategy to enhance propene selectivity. Applied Catalysis A: General, 447–448, 178–185. DOI: 10.1016/j.apcata.2012.09.025. http://dx.doi.org/10.1016/j.apcata.2012.09.02510.1016/j.apcata.2012.09.025Suche in Google Scholar
[5] Chang, C. D. (1984). Methanol conversion to light olefins. Catalysis Reviews: Science and Engineering, 26, 323–345. DOI: 10.1080/01614948408064716. http://dx.doi.org/10.1080/0161494840806471610.1080/01614948408064716Suche in Google Scholar
[6] Chang, C. D., Chu, C. T. W., & Socha, R. F. (1984). Methanol conversion to olefins over ZSM-5: I. Effect of temperature and zeolite SiO2/Al2O3. Journal of Catalysis, 86, 289–296. DOI: 10.1016/0021-9517(84)90374-9. http://dx.doi.org/10.1016/0021-9517(84)90374-910.1016/0021-9517(84)90374-9Suche in Google Scholar
[7] Dehertog, W. J. H., & Froment, G. F. (1991). Production of light alkenes from methanol on ZSM-5 catalysts. Applied Catalysis, 71, 153–165. DOI: 10.1016/0166-9834(91)85012-k. http://dx.doi.org/10.1016/0166-9834(91)85012-K10.1016/0166-9834(91)85012-KSuche in Google Scholar
[8] El-Malki, El-M., van Santen, R. A., & Sachtler, W. M. H. (1999). Introduction of Zn, Ga, and Fe into HZSM-5 cavities by sublimation: Identification of acid sites. The Journal of Physical Chemistry B, 103, 4611–4622. DOI: 10.1021/jp990116l. http://dx.doi.org/10.1021/jp990116l10.1021/jp990116lSuche in Google Scholar
[9] Inui, T., Matsuda, H., Yamase, O., Nagata, H., Fukuda, K., Ukawa, T., & Miyamoto, A. (1986). Highly selective synthesis of light olefins from methanol on a novel Fe-silicate. Journal of Catalysis, 98, 491–501. DOI: 10.1016/0021-9517(86)90337-4. http://dx.doi.org/10.1016/0021-9517(86)90337-410.1016/0021-9517(86)90337-4Suche in Google Scholar
[10] Jansen, J. C., van der Gaag, F. J., & van Beckum, H. (1984). Identification of ZSM-type and other 5-ring containing zeolites by i.r. spectroscopy. Zeolites, 4, 369–372. DOI: 10.1016/0144-2449(84)90013-7. http://dx.doi.org/10.1016/0144-2449(84)90013-710.1016/0144-2449(84)90013-7Suche in Google Scholar
[11] Kaarsholm, M., Joensen, F., Nerlov, J., Cenni, R., Chaouki, J., & Patience, G. S. (2007). Phosphorous modified ZSM-5: Deactivation and product distribution for MTO. Chemical Engineering Science, 62, 5527–5532. DOI: 10.1016/j.ces.2006.12.076. http://dx.doi.org/10.1016/j.ces.2006.12.07610.1016/j.ces.2006.12.076Suche in Google Scholar
[12] Kawai, T., Jiang, K. M., & Ishikawa, T. (1996). FT-IR and TPD studies of adsorbed pyridine on Re2O7/Al2O3 catalysts. Journal of Catalysis, 159, 288–295. DOI: 10.1006/jcat.1996.0090. http://dx.doi.org/10.1006/jcat.1996.009010.1006/jcat.1996.0090Suche in Google Scholar
[13] Keil, F. J. (1999). Methanol-to-hydrocarbons: process technology. Microporous and Mesoporous Materials, 29, 49–66. DOI: 10.1016/s1387-1811(98)00320-5. http://dx.doi.org/10.1016/S1387-1811(98)00320-510.1016/S1387-1811(98)00320-5Suche in Google Scholar
[14] Liu, Z., Sun, C., Wang, G., Wang, Q., & Cai, G. (2000). New progress in R&D of lower olefin synthesis. Fuel Processing Technology, 62, 161–172. DOI: 10.1016/s0378-3820(99)00117-4. http://dx.doi.org/10.1016/S0378-3820(99)00117-410.1016/S0378-3820(99)00117-4Suche in Google Scholar
[15] Lubango, L. M., & Scurrell, M. S. (2002). Light alkanes aromatization to BTX over Zn-ZSM-5 catalysts: Enhancements in BTX selectivity by means of a second transition metal ion. Applied Catalysis A: General, 235, 265–272. DOI: 10.1016/s0926-860x(02)00271-5. http://dx.doi.org/10.1016/S0926-860X(02)00271-510.1016/S0926-860X(02)00271-5Suche in Google Scholar
[16] Parry, E. P. (1963). An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. Journal of Catalysis, 2, 371–379. DOI: 10.1016/0021-9517(63)90102-7. 10.1016/0021-9517(63)90102-7Suche in Google Scholar
[17] Prinz, D., & Riekert, L. (1988). Formation of ethene and propene from methanol on zeolite ZSM-5: I. Investigation of rate and selectivity in a batch reactor. Applied Catalysis, 37, 139–154. DOI: 10.1016/s0166-9834(00)80757-5. http://dx.doi.org/10.1016/S0166-9834(00)80757-510.1016/S0166-9834(00)80757-5Suche in Google Scholar
[18] Spivey, J. J., Froment, G. F., Dehertog, W. J. H., & Marchi, A. J. (1992). Zeolite catalysis in the conversion of methanol into olefins. Catalysis, 9, 1–64. DOI: 10.1039/9781847553218-00001. http://dx.doi.org/10.1039/9781847553218-0000110.1039/9781847553218-00001Suche in Google Scholar
[19] Stöcker, M. (1999). Methanol-to-hydrocarbons: catalytic material and their behavior. Microporous and Mesoporous Materials, 29, 3–48. DOI: 10.1016/s1387-1811(98)00319-9. http://dx.doi.org/10.1016/S1387-1811(98)00319-910.1016/S1387-1811(98)00319-9Suche in Google Scholar
[20] Svelle, S., Joensen, F., Nerlov, J., Olsbye, U., Lillerud, K. P., Kolboe, S., & Bjørgen, M. (2006). Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: Ethene formation is mechanistically separated from the formation of higher alkenes. Journal of the American Chemical Society, 128, 14770–14771. DOI: 10.1021/ja065810a. http://dx.doi.org/10.1021/ja065810a10.1021/ja065810aSuche in Google Scholar PubMed
[21] Triwahyono, S., Jalil, A. A., Mukti, R. R., Musthofa, M., Razali, N. A. M., & Aziz, M. A. A. (2011). Hydrogen spillover behavior of Zn/HZSM-5 showing catalytically active protonic acid sites in the isomerization of n-pentane. Applied Catalysis A: General, 407, 91–99. DOI: 10.1016/j.apcata.2011.08.027. http://dx.doi.org/10.1016/j.apcata.2011.08.02710.1016/j.apcata.2011.08.027Suche in Google Scholar
[22] Trong On, D., Kaliaguine, S., & Bonneviot, L. (1995). Titanium boralites with MFI structure characterized using XRD, XANES, IR, and UV-visible techniques: Effect of hydrogen peroxide on the preparation. Journal of Catalysis, 157, 235–243. DOI: 10.1006/jcat.1995.1284. http://dx.doi.org/10.1006/jcat.1995.128410.1006/jcat.1995.1284Suche in Google Scholar
[23] Valle, B., Alonso, A., Atutxa, A., Gayubo, A. G., & Bilbao, J. (2005). Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process. Catalysis Today, 106, 118–122. DOI: 10.1016/j.cattod.2005.07.132. http://dx.doi.org/10.1016/j.cattod.2005.07.13210.1016/j.cattod.2005.07.132Suche in Google Scholar
[24] Wu, M. M., & Kaeding, W. W. (1984). Conversion of methanol to hydrocarbons: II. Reaction paths for olefin formation over HZSM-5 zeolite catalyst. Journal of Catalysis, 88, 478–489. DOI: 10.1016/0021-9517(84)90025-3. http://dx.doi.org/10.1016/0021-9517(84)90025-310.1016/0021-9517(84)90025-3Suche in Google Scholar
[25] Wu, X., Abraha, M. G., & Anthony, R. G. (2004). Methanol conversion on SAPO-34: reaction condition for fixed-bed reactor. Applied Catalysis A: General, 260, 63–69. DOI: 10.1016/j.apcata.2003.10.011. http://dx.doi.org/10.1016/j.apcata.2003.10.01110.1016/j.apcata.2003.10.011Suche in Google Scholar
[26] Xue, B., Li, Y., & Deng, L. (2009). Selective synthesis of pxylene by alkylation of toluene with dimethyl carbonate over MgO-modified MCM-22. Catalysis Communications, 10, 1609–1614. DOI: 10.1016/j.catcom.2009.04.028. http://dx.doi.org/10.1016/j.catcom.2009.04.02810.1016/j.catcom.2009.04.028Suche in Google Scholar
[27] Zhang, S., Zhang, B., Gao, Z., & Han, Y. (2010). Methanol to olefin over Ca-modified HZSM-5 zeolites. Industrial & Engineering Chemistry Research, 49, 2103–2106. DOI: 10.1021/ie901446m. http://dx.doi.org/10.1021/ie901446m10.1021/ie901446mSuche in Google Scholar
© 2014 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Environmental catalysis — Topical issue
- Structured catalysts for methanol-to-olefins conversion: a review
- Diesel soot combustion catalysts: review of active phases
- State of the art in catalytic oxidation of chlorinated volatile organic compounds
- Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins
- Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation
- Valorisation of bio-oil resulting from fast pyrolysis of wood
- Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x MnxO in cellulose conversion
- Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process
- Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity
- Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)
- Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode
- CdS/TiO2 composite films for methylene blue photodecomposition under visible light irradiation and non-photocorrosion of cadmium sulfide
- Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate
- Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air
- Solid waste decontamination by thermal desorption and catalytic oxidation methods
Artikel in diesem Heft
- Environmental catalysis — Topical issue
- Structured catalysts for methanol-to-olefins conversion: a review
- Diesel soot combustion catalysts: review of active phases
- State of the art in catalytic oxidation of chlorinated volatile organic compounds
- Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins
- Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation
- Valorisation of bio-oil resulting from fast pyrolysis of wood
- Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x MnxO in cellulose conversion
- Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process
- Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity
- Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)
- Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode
- CdS/TiO2 composite films for methylene blue photodecomposition under visible light irradiation and non-photocorrosion of cadmium sulfide
- Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate
- Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air
- Solid waste decontamination by thermal desorption and catalytic oxidation methods