Startseite State of the art in catalytic oxidation of chlorinated volatile organic compounds
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

State of the art in catalytic oxidation of chlorinated volatile organic compounds

  • Asier Aranzabal EMAIL logo , Beñat Pereda-Ayo , M. González-Marcos , José González-Marcos , Rubén López-Fonseca und Juan González-Velasco
Veröffentlicht/Copyright: 23. Mai 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Chlorine-containing organic compounds (Cl-VOC) require special attention due to their distinct toxicity, high stability and persistence in the environment. Removal of Cl-VOC by catalytic oxidation over a wide variety of catalysts has been presented in literature. This paper reviews the state of the art in this subject, including different model compounds, nature of catalysts, and oxidation activity. Catalyst selectivity (CO2 vs. CO and HCl vs. Cl2), by-products formation and the causes of deactivation are also analyzed as the most important factors in the catalyst selection for practical applications.

[1] Abdullah, A. Z., Abu Bakar, M. Z., & Bhatia, S. (2006). Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified HZSM-5 catalyst. Journal of Hazardous Materials, 129, 39–49. DOI: 10.1016/j.jhazmat.2005.05.051. 10.1016/j.jhazmat.2005.05.051Suche in Google Scholar

[2] Agarwal, S. K., Spivey, J. J., & Butt, J. B. (1992). Catalyst deactivation during deep oxidation of chlorohydrocarbons. Applied Catalysis A: General, 82, 259–275. DOI: 10.1016/0926-860x(92)85009-z. 10.1016/0926-860X(92)85009-ZSuche in Google Scholar

[3] Albonetti, S., Cavani, F., & Trifirò, F. (1996). Key aspects of catalyst design for the selective oxidation of paraffins. Catalysis Reviews: Science and Engineering, 38, 413–438. DOI: 10.1080/01614949608006463. 10.1080/01614949608006463Suche in Google Scholar

[4] Aneggi, E., De Leitenberg, C., Dolcetti, G., & Trovarelli, A. (2006). Promotional effect of rare earths and transition metals in the combustion of diesel soot over CeO2 and CeO2-ZrO2. Catalysis Today, 114, 40–47. DOI: 10.1016/j.cattod.2006.02.008. 10.1016/j.cattod.2006.02.008Suche in Google Scholar

[5] Aranzabal, A., González-Marcos, J. A., López-Fonseca, R., Gutiérrez-Ortiz, M. A., & González-Velasco, J. R. (2000). Deep catalytic oxidation of chlorinated VOC mixtures from groundwater stripping emissions. Studies in Surface Science and Catalysis, 130, 1229–1234. DOI: 10.1016/s0167-2991(00)80367-5. 10.1016/S0167-2991(00)80367-5Suche in Google Scholar

[6] Aranzabal, A., González-Marcos, J. A., Romero-Sáez, M., González-Velasco, J. R., Guillemot, M., & Magnoux, P. (2009). Stability of protonic zeolites in the catalytic oxidation of chlorinated VOCs (1,2-dichloroethane). Applied Catalysis. B: Environmental, 88, 533–541. DOI: 10.1016/j.apcatb.2008.10.007. 10.1016/j.apcatb.2008.10.007Suche in Google Scholar

[7] Aranzabal, A., Romero-Sáez, M., Elizundia, U., González-Velasco, J. R., & González-Marcos, J. A. (2012). Deactivation of H-zeolites during catalytic oxidation of trichloroethylene. Journal of Catalysis, 296, 165–174. DOI: 10.1016/j.jcat.2012.09.012. 10.1016/j.jcat.2012.09.012Suche in Google Scholar

[8] Armor, J. N. (1992). Environmental catalysis. Applied Catalysis B: Environmental, 1, 221–256. DOI: 10.1016/0926-3373(92)80051-z. 10.1016/0926-3373(92)80051-ZSuche in Google Scholar

[9] Becker, L., & Förster, H. (1997). Oxidative decomposition of chlorobenzene catalyzed by palladium-containing zeolite Y. Journal of Catalysis, 170, 200–203. DOI: 10.1006/jcat.1997.1740. 10.1006/jcat.1997.1740Suche in Google Scholar

[10] Bertinchamps, F., Treinen, M., Blangenois, N., Mariage, E., & Gaigneaux, E. M. (2005). Positive effect of NOx on the performances of VOx/TiO2-based catalysts in the total oxidation abatement of chlorobenzene. Journal of Catalysis, 230, 493–498. DOI: 10.1016/j.jcat.2005.01.009. 10.1016/j.jcat.2005.01.009Suche in Google Scholar

[11] Bertinchamps, F., Grégoire, C., & Gaigneaux, E. M. (2006a). Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics. Part II: Influence of the nature and addition protocol of secondary phases to VOx/TiO2. Applied Catalysis B: Environmental, 66, 10–22. DOI: 10.1016/j.apcatb.2006.02.012. 10.1016/j.apcatb.2006.02.012Suche in Google Scholar

[12] Bertinchamps, F., Attianese, A., Mestdagh, M. M., & Gaigneaux, E. M. (2006b). Catalysts for chlorinated VOCs abatement: Multiple effects of water on the activity of VOx based catalysts for the combustion of chlorobenzene. Catalysis Today, 112, 165–168. DOI: 10.1016/j.cattod.2005.11.043. 10.1016/j.cattod.2005.11.043Suche in Google Scholar

[13] Bickle, G. M., Suzuki, T., & Mitarai, Y. (1994). Catalytic destruction of chlorofluorocarbons and toxic chlorinated hydrocarbons. Applied Catalysis B: Environmental, 4, 141–153. DOI: 10.1016/0926-3373(94)00023-9. 10.1016/0926-3373(94)00023-9Suche in Google Scholar

[14] Bond, G. C., & Sadeghi, N. (1975). Catalysed destruction of chlorinated hydrocarbons. Journal of Chemical Technology and Biotechnology, 25, 241–248. DOI: 10.1002/jctb.5020250402. 10.1002/jctb.5020250402Suche in Google Scholar

[15] Chatterjee, S., & Greene, H. L. (1993). Effects of catalyst composition on dual site zeolite catalysts used in chlorinated hydrocarbon oxidation. Applied Catalysis A: General, 98, 139–158. DOI: 10.1016/0926-860x(93)80029-p. 10.1016/0926-860X(93)80029-PSuche in Google Scholar

[16] Chen, B. S., Bai, C. S., Cook, R., Wright, J., & Wang, C. (1996). Gold/cobalt oxide catalysts for oxidative destruction of dichloromethane. Catalysis Today, 30, 15–20. DOI: 10.1016/0920-5861(95)00337-1. 10.1016/0920-5861(95)00337-1Suche in Google Scholar

[17] Chen, Q. Y., Li, N., Luo, M. F., & Lu, J. Q. (2012). Catalytic oxidation of dichloromethane over Pt/CeO2-Al2O3 catalysts. Applied Catalysis B: Environmental, 127, 159–166. DOI: 10.1016/j.apcatb.2012.08.020. 10.1016/j.apcatb.2012.08.020Suche in Google Scholar

[18] Chintawar, P. S., & Greene, H. L. (1997). Adsorption and catalytic destruction of trichloroethylene in hydrophobic zeolites. Applied Catalysis B: Environmental, 14, 37–47. DOI: 10.1016/s0926-3373(97)00010-6. 10.1016/S0926-3373(97)00010-6Suche in Google Scholar

[19] Corella, J., Toledo, J. M., & Padilla, A. M. (2000). On the selection of the catalyst among the commercial platinumbased ones for total oxidation of some chlorinated hydrocarbons. Applied Catalysis B: Environmental, 27, 243–256. DOI: 10.1016/s0926-3373(00)00154-5. 10.1016/S0926-3373(00)00154-5Suche in Google Scholar

[20] Dai, Q. G., Wang, X. Y., & Lu, G. Z. (2007). Low-temperature catalytic destruction of chlorinated VOCs over cerium oxide. Catalysis Communications, 8, 1645–1649. DOI: 10.1016/j.catcom.2007.01.024. 10.1016/j.catcom.2007.01.024Suche in Google Scholar

[21] Dai, Q. G., Wang, X. Y., & Lu, G. Z. (2008). Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation. Applied Catalysis B: Environmental, 81, 192–202. DOI: 10.1016/j.apcatb.2007.12.013. 10.1016/j.apcatb.2007.12.013Suche in Google Scholar

[22] Debecker, D. P., Delaigle, R., Eloy, P., & Gaigneaux, E. M. (2008). Abatement of model molecules for dioxin total oxidation on V2O5-WO3/TiO2 catalysts: The case of substituted oxygen-containing VOC. Journal of Molecular Catalysis A: Chemical, 289, 38–43. DOI: 10.1016/j.molcata.2008.04.006. 10.1016/j.molcata.2008.04.006Suche in Google Scholar

[23] Delaigle, R., Debecker, D. P., Bertinchamps, F., & Gaigneaux, E. M. (2009). Revisiting the behavior of vanadia-based catalysts in the abatement of (chloro)-aromatic pollutants: Towards an integrated understanding. Topics in Catalysis, 52, 501–516. DOI: 10.1007/s11244-009-9181-9. 10.1007/s11244-009-9181-9Suche in Google Scholar

[24] de Rivas, B., Gutiérrez-Ortiz, J. I., López-Fonseca, R., & González-Velasco, J. R. (2006). Analysis of the simultaneous catalytic combustion of chlorinated aliphatic pollutants and toluene over ceria-zirconia mixed oxides. Applied Catalysis A: General, 314, 54–63. DOI: 10.1016/j.apcata.2006.08.005. 10.1016/j.apcata.2006.08.005Suche in Google Scholar

[25] de Rivas, B., López-Fonseca, R., Gutiérrez-Ortiz, M. A., & Gutiérrez-Ortiz, J. I. (2008). Catalytic performance of chlorinated Ce/Zr mixed oxides for Cl-VOC oxidation. WIT Transactions on Ecology and the Environment, 109, 857–866. DOI: 10.2495/wm080871. 10.2495/WM080871Suche in Google Scholar

[26] de Rivas, B., López-Fonseca, R., Sampedro, C., & Gutiérrez-Ortiz, J. I. (2009a). Catalytic behavior of thermally aged Ce/Zr mixed oxides for the purification of chlorinated VOC-containing gas streams. Applied Catalysis B: Environmental, 90, 545–555. DOI: 10.1016/j.apcatb.2009.04.017. 10.1016/j.apcatb.2009.04.017Suche in Google Scholar

[27] de Rivas, B., López-Fonseca, R., Gutiérrez-Ortiz, M. A., & Gutiérrez-Ortiz, J. I. (2009b). Role of water and other H-rich additives in the catalytic combustion of 1,2-dichloroethane and trichloroethylene. Chemosphere, 75, 1356–1362. DOI: 10.1016/j.chemosphere.2009.02.019. 10.1016/j.chemosphere.2009.02.019Suche in Google Scholar PubMed

[28] de Rivas, B., López-Fonseca, R., Gutiérrez-Ortiz, M. A., & Gutiérrez-Ortiz, J. I. (2011a). Impact of induced chlorinepoisoning on the catalytic behavior of Ce0.5Zr0.5O2 and Ce0.15Zr0.85O2 in the gas-phase oxidation of chlorinated VOCs. Applied Catalysis B: Environmental, 104, 373–381. DOI: 10.1016/j.apcatb.2011.03.003. 10.1016/j.apcatb.2011.03.003Suche in Google Scholar

[29] de Rivas, B., López-Fonseca, R., Gutiérrez-Ortiz, M. A., & Gutiérrez-Ortiz, J. I. (2011b). Structural characterisation of Ce0,5Zr0.5O2 modified by redox treatments and evaluation for chlorinated VOC oxidation. Applied Catalysis B: Environmental, 101, 317–325. DOI: 10.1016/j.apcatb.2010.09.034. 10.1016/j.apcatb.2010.09.034Suche in Google Scholar

[30] de Rivas, B., Guillén-Urtado, N., López-Fonseca, R., Coloma-Pascual, F., García-García, A., Gutiérrez-Ortiz, J. I., & Bueno-López, A. (2012). Activity, selectivity and stability of praseodymium-doped CeO2 for chlorinated VOCs catalytic combustion. Applied Catalysis B: Environmental, 121-122, 162–170. DOI: 10.1016/j.apcatb.2012.03.029. 10.1016/j.apcatb.2012.03.029Suche in Google Scholar

[31] de Rivas, B., Sampedro, C., García-Real, M., López-Fonseca, R., & Gutiérrez-Ortiz, J. I. (2013). Promoted activity of sulphated Ce/Zr mixed oxides for chlorinated VOC oxidative abatement. Applied Catalysis B: Environmental, 129, 225–235. DOI: 10.1016/j.apcatb.2012.09.026. 10.1016/j.apcatb.2012.09.026Suche in Google Scholar

[32] Di Monte, R., & Kašpar, J. (2005). Heterogeneous environmental catalysis — a gentle art: CeO2-ZrO2 mixed oxides as a case history. Catalysis Today, 100, 27–35. DOI: 10.1016/j.cattod.2004.11.005. 10.1016/j.cattod.2004.11.005Suche in Google Scholar

[33] Divakar, D., Romero-Sáez, M., Pereda-Ayo, B., Aranzabal, A., González-Marcos, J. A., & González-Velasco, J. R. (2011). Catalytic oxidation of trichloroethylene over Fe-zeolites. Catalysis Today, 176, 357–360. DOI: 10.1016/j.cattod.2010.11.065. 10.1016/j.cattod.2010.11.065Suche in Google Scholar

[34] Döbber, D., Kießling, D., Schmitz, W., & Wendt, G. (2004). MnOx/ZrO2 catalysts for the total oxidation of methane and chloromethane. Applied Catalysis B: Environmental, 52, 135–143. DOI: 10.1016/j.apcatb.2004.02.012. 10.1016/j.apcatb.2004.02.012Suche in Google Scholar

[35] European Council, EC (1999). Council directive 1999/13/EC of 11 March 1999 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain activities and installations. Official Journal of the European Communities, 42, L 85/1–L 85/22. Suche in Google Scholar

[36] European Council, EC (2004). Directive 2004/42/CE of the European parliament and of the Council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products and amending Directive 1999/13/EC. Official Journal of the European Communities, 47, L 143/87–L 143/96. Suche in Google Scholar

[37] European Council, EC (2008). Directive 2008/112/EC of the European parliament and of the Council of 16 December 2008 amending Council Directives 76/768/EEC, 88/378/EEC, 1999/13/EC and Directives 2000/53/EC, 2002/96/EC and 2004/42/EC of the European Parliament and of the Council in order to adapt them to Regulation (EC) No 1272/2008 on classification, labelling and packaging of substances and mixtures. Official Journal of the European Communities, 51, L 345/68–L 345/74. Suche in Google Scholar

[38] Farrauto, R. J., & Bartholomew, C. H. (2003). Fundamentals of industrial catalytic processes. Chichester, UK: Wiley. Suche in Google Scholar

[39] Feijen-Jeurissen, M. M. R., Jorna, J. J., Nieuwenhuys, B. E., Sinquin, G., Petit, C., & Hindermann, J. P. (1999). Mechanism of catalytic destruction of 1,2-dichloroethane and trichloroethylene over γ-Al2O3 and γ-Al2O3 supported chromium and palladium catalysts. Catalysis Today, 54, 65–79. DOI: 10.1016/s0920-5861(99)00169-8. 10.1016/S0920-5861(99)00169-8Suche in Google Scholar

[40] Fevrier, D., Mignon, P., & Vernet, J. L. (1977). Reactivity of some halogenated alkanes on 13X molecular sieve. Journal of Catalysis, 50, 390–399. DOI: 10.1016/0021-9517(77)90051-3. 10.1016/0021-9517(77)90051-3Suche in Google Scholar

[41] Finocchio, E., Ramis, G., & Busca, G, (2011). A study on catalytic combustion of chlorobenzenes. Catalysis Today, 169, 3–9. DOI: 10.1016/j.cattod.2010.10.097. 10.1016/j.cattod.2010.10.097Suche in Google Scholar

[42] Gallastegi-Villa, M., Romero-Sáez, M., Aranzabal, A., González-Marcos, J. A., & González-Velasco, J. R. (2013). Strategies to enhance the stability of h-bea zeolite in the catalytic oxidation of Cl-VOCs: 1,2-Dichloroethane. Catalysis Today, 213, 192–197. DOI: 10.1016/j.cattod.2013.02.022. 10.1016/j.cattod.2013.02.022Suche in Google Scholar

[43] Gavaskar, A. R., Kim, B. C., Rosansky, S. H., Ong, S. K., & Marchand, E. G. (1995). Crossflow air stripping and catalytic oxidation of chlorinated hydrocarbons from groundwater. Environmental Progress, 14, 33–40. DOI: 10.1002/ep.670140119. 10.1002/ep.670140119Suche in Google Scholar

[44] Gervasini, A., Pirola, C., & Ragaini, V. (2002). Destruction of carbon tetrachloride in the presence of hydrogen-supplying compounds with ionisation and catalytic oxidation. Applied Catalysis B: Environmental, 38, 17–28. DOI: 10.1016/s0926-3373(02)00013-9. 10.1016/S0926-3373(02)00013-9Suche in Google Scholar

[45] Giraudon, J. M., Elhachimi, A., & Leclercq, G. (2008). Catalytic oxidation of chlorobenzene over Pd/perovskites. Applied Catalysis B: Environmental, 84, 251–261. DOI: 10.1016/j.apcatb.2008.04.023. 10.1016/j.apcatb.2008.04.023Suche in Google Scholar

[46] Golodets, G. I. (1983). Heterogeneous catalytic reactions involving molecular oxygen (Studies in Surface Science and Catalysis, Vol. 15). Amsterdam, The Netherlands: Elsevier. Suche in Google Scholar

[47] González-Velasco, J. R., Aranzabal, A., Gutiérrez Ortiz, J. I., López-Fonseca, R., & Gutiérrez-Ortiz, M. A. (1998). Activity and product distribution of alumina supported platinum and palladium catalysts in the gas-phase oxidative decomposition of chlorinated hydrocarbons. Applied Catalysis B: Environmental, 19, 189–197. DOI: 10.1016/s0926-3373(98)00078-2. 10.1016/S0926-3373(98)00078-2Suche in Google Scholar

[48] González-Velasco, J. R., Gutiérrez-Ortiz, M. A., Botas, J. A., Bernal, S., Gatica, J. M., & Pérez-Omil, J. A. (1999). HREM and XRD characterisation of thermal ageing of Pd/CeO2/Al2O3 automotive catalysts. Studies in Surface Science and Catalysis, 126, 187–194. DOI: 10.1016/s0167-2991(99)80466-2. 10.1016/S0167-2991(99)80466-2Suche in Google Scholar

[49] González-Velasco, J. R., Aranzabal, A., López-Fonseca, R., Ferret, R., & González-Marcos, J. A. (2000a). Enhancement of the catalytic oxidation of hydrogen-lean chlorinated VOCs in the presence of hydrogen-supplying compounds. Applied Catalysis B: Environmental, 24, 33–43. DOI: 10.1016/s0926-3373(99)00087-9. 10.1016/S0926-3373(99)00087-9Suche in Google Scholar

[50] González-Velasco, J. R., López-Fonseca, R., Aranzabal, A., Gutiérrez-Ortiz, J. I., & Steltenpohl, P. (2000b). Evaluation of H-type zeolites in the destructive oxidation of chlorinated volatile organic compounds. Applied Catalysis B: Environmental, 24, 233–242. DOI: 10.1016/s0926-3373(99)00105-8. 10.1016/S0926-3373(99)00105-8Suche in Google Scholar

[51] Guillemot, M., Mijoin, J., Mignard, S., & Magnoux, P. (2007). Mode of zeolite catalysts deactivation during chlorinated VOCs oxidation. Applied Catalysis A: General, 327, 211–217. DOI: 10.1016/j.apcata.2007.05.012. 10.1016/j.apcata.2007.05.012Suche in Google Scholar

[52] Guisnet, M., & Magnoux, P. (1994). Fundamental description of deactivation and regeneration of acid zeolites. Studies in Surface Science and Catalysis, 88, 53–68. DOI: 10.1016/s0167-2991(08)62729-9. 10.1016/S0167-2991(08)62729-9Suche in Google Scholar

[53] Gutiérrez-Ortiz, J. I., López-Fonseca, R., Aurrekoetxea, U., & González-Velasco, J. R. (2003). Low-temperature deep oxidation of dichloromethane and trichloroethylene by H-ZSM-5-supported manganese oxide catalysts. Journal of Catalysis, 218, 148–154. DOI: 10.1016/s0021-9517(03)00142-8. 10.1016/S0021-9517(03)00142-8Suche in Google Scholar

[54] Gutiérrez-Ortiz, J. I., de Rivas, B., López-Fonseca, R., Martín, S., & González-Velasco, J. R. (2007). Structure of Mn-Zr mixed oxides catalysts and their catalytic performance in the gas-phase oxidation of chlorocarbons. Chemosphere, 68, 1004–1012. DOI: 10.1016/j.chemosphere.2007.02.025. 10.1016/j.chemosphere.2007.02.025Suche in Google Scholar PubMed

[55] Heck, R. M., Farrauto, R. J., & Gulati, S. T. (2009). Catalytic air pollution control: Commercial technology (3rd ed.). Hoboken, NJ, USA: Wiley. 10.1002/9781118397749Suche in Google Scholar

[56] Hetrick, C. E., Patcas, F., & Amiridis, M. D. (2011). Effect of water on the oxidation of dichlorobenzene over V2O5/TiO2 catalysts. Applied Catalysis B: Environmental, 101, 622–628. DOI: 10.1016/j.apcatb.2010.11.003. 10.1016/j.apcatb.2010.11.003Suche in Google Scholar

[57] Horsley, J. A. (1992). Catalyst for the elimination of volatile organic compounds. Halogenated compounds. Mountain View, CA, USA: Catalytica Studies Division. Suche in Google Scholar

[58] Hung, S. L., Barresi, A., & Pfefferle, L. D. (1991). Flow tube reactor studies of catalytically stabilized combustion of methyl chloride. Symposium (International) on Combustion, 23, 909–915. DOI: 10.1016/s0082-0784(06)80345-0. 10.1016/S0082-0784(06)80345-0Suche in Google Scholar

[59] Imamura, S., Tarumoto, H., & Ishida, S. (1989). Decomposition of 1,2-dichloroethane on titanium dioxide/silica. Industrial & Engineering Chemistry Research, 28, 1449–1452. DOI: 10.1021/ie00094a001. 10.1021/ie00094a001Suche in Google Scholar

[60] Imamura, S. (1992). Catalytic decomposition of halogenated organic compounds and deactivation of the catalysts. Catalysis Today, 11, 547–567. DOI: 10.1016/0920-5861(92)80042-l. 10.1016/0920-5861(92)80042-LSuche in Google Scholar

[61] Jones, J., & Ross, J. R. H. (1997). The development of supported vanadia catalysts for the combined catalytic removal of the oxides of nitrogen and of chlorinated hydrocarbons from flue gases. Catalysis Today, 35, 97–105. DOI: 10.1016/s0920-5861(96)00148-4. 10.1016/S0920-5861(96)00148-4Suche in Google Scholar

[62] Kang, M., & Lee, C. H. (2004). Methylene chloride oxidation on oxidative carbon-supported chromium oxide catalyst. Applied Catalysis A: General, 266, 163–172. DOI: 10.1016/j.apcata.2004.02.041. 10.1016/j.apcata.2004.02.041Suche in Google Scholar

[63] Kawi, S., & Te, M. (1998). MCM-48 supported chromium catalyst for trichloroethylene oxidation. Catalysis Today, 44, 101–109. DOI: 10.1016/s0920-5861(98)00178-3. 10.1016/S0920-5861(98)00178-3Suche in Google Scholar

[64] Kießling, D., Schneider, R., Kraak, P., Haftendorn, M., & Wendt, G. (1998). Perovskite-type oxides — catalysts for the total oxidation of chlorinated hydrocarbons. Applied Catalysis B: Environmental, 19, 143–151. DOI: 10.1016/s0926-3373(98)00073-3. 10.1016/S0926-3373(98)00073-3Suche in Google Scholar

[65] Komatsu, T., & Ooshima, R. (2009). Catalytic combustion of dioxin analogue compounds on Pt supported zeolite. Journal of the Japan Petroleum Institute, 52, 332–340. DOI: 10.1627/jpi.52.332. 10.1627/jpi.52.332Suche in Google Scholar

[66] Kosusko, M., & Nunez, C. M. (1990). Destruction of volatile organic compounds using catalytic oxidation. Journal of the Air & Waste Management Association, 40, 254–259. DOI: 10.1080/10473289.1990.10466682. 10.1080/10473289.1990.10466682Suche in Google Scholar

[67] Koyer-Gołkowska, A., Musialik-Piotrowska, A., & Rutkowski, J. D. (2004). Oxidation of chlorinated hydrocarbons over Pt-Pd-based catalyst: Part 1. Chlorinated methanes. Catalysis Today, 90, 133–138. DOI: 10.1016/j.cattod.2004.04.018. 10.1016/j.cattod.2004.04.018Suche in Google Scholar

[68] Krishnamoorthy, S., Baker, J. P., & Amiridis, M. D. (1998). Catalytic oxidation of 1,2-dichlorobenzene over V2O5/TiO2-based catalysts. Catalysis Today, 40, 39–46. DOI: 10.1016/s0920-5861(97)00117-x. 10.1016/S0920-5861(97)00117-XSuche in Google Scholar

[69] Krishnamoorthy, S., Rivas, J. A., & Amiridis, M. D. (2000). Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides. Journal of Catalysis, 193, 264–272. DOI: 10.1006/jcat.2000.2895. 10.1006/jcat.2000.2895Suche in Google Scholar

[70] Kułażyński, M., van Ommen, J. G., Trawczyński, J., & Walendziewski, J. (2002). Catalytic combustion of trichloroethylene over TiO2-SiO2 supported catalysts. Applied Catalysis B: Environmental, 36, 239–247. DOI: 10.1016/s0926-3373(01)00313-7. 10.1016/S0926-3373(01)00313-7Suche in Google Scholar

[71] Lago, R. M., Green, M. L. H., Tsang, S. C., & Odlyha, M. (1996). Catalytic decomposition of chlorinated organics in air by copper chloride based catalysts. Applied Catalysis B: Environmental, 8, 107–121. DOI: 10.1016/0926-3373(95)00055-0. 10.1016/0926-3373(95)00055-0Suche in Google Scholar

[72] Li, W. B., Wang, J. X., & Gong, H. (2009). Catalytic combustion of VOCs on non-noble metal catalysts. Catalysis Today, 148, 81–87. DOI: 10.1016/j.cattod.2009.03.007. 10.1016/j.cattod.2009.03.007Suche in Google Scholar

[73] Li, D., Li, C. S., & Suzuki, K. (2013). Catalytic oxidation of VOCs over Al- and Fe-pillared montmorillonite. Applied Clay Science, 77-78, 56–60. DOI: 10.1016/j.clay.2013.02.027. 10.1016/j.clay.2013.02.027Suche in Google Scholar

[74] Lichtenberger, J., & Amiridis, M. D. (2004). Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts. Journal of Catalysis, 223, 296–308. DOI: 10.1016/j.jcat.2004.01.032. 10.1016/j.jcat.2004.01.032Suche in Google Scholar

[75] Liu, Y., Luo, M. F., Wei, Z. B., Xin, Q., Ying, P. L., & Li, C. (2001). Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts. Applied Catalysis B: Environmental, 29, 61–67. DOI: 10.1016/s0926-3373(00)00193-4. 10.1016/S0926-3373(00)00193-4Suche in Google Scholar

[76] Lomnicki, S., Lichtenberger, J., Xu, Z. T., Waters, M., Kosman, J., & Amiridis, M. D. (2003). Catalytic oxidation of 2,4,6-trichlorophenol over vanadia/titania-based catalysts. Applied Catalysis B: Environmental, 46, 105–119. DOI: 10.1016/s0926-3373(03)00215-7. 10.1016/S0926-3373(03)00215-7Suche in Google Scholar

[77] López-Fonseca, R., Aranzabal, A., Steltenpohl, P., Gutiérrez-Ortiz, J. I., & González-Velasco, J. R. (2000). Performance of zeolites and product selectivity in the gas-phase oxidation of 1,2-dichloroethane. Catalysis Today, 62, 367–377. DOI: 10.1016/s0920-5861(00)00438-7. 10.1016/S0920-5861(00)00438-7Suche in Google Scholar

[78] López-Fonseca, R., Aranzabal, A., Gutiérrez-Ortiz, J. I., Álvarez-Uriarte, J. I., & González-Velasco, J. R. (2001). Comparative study of the oxidative decomposition of trichlorethylene over H-type zeolites under dry and humid conditions. Applied Catalysis B: Environmental, 30, 303–313. DOI: 10.1016/s0926-3373(00)00244-7. 10.1016/S0926-3373(00)00244-7Suche in Google Scholar

[79] López-Fonseca, R., Gutiérrez-Ortiz, J. I., Gutiérrez-Ortiz, M. A., & González-Velasco, J. R. (2002). Dealuminated Y zeolites for destruction of chlorinated volatile organic compounds. Journal of Catalysis, 209, 145–150. DOI: 10.1006/jcat.2002.3591. 10.1006/jcat.2002.3591Suche in Google Scholar

[80] López-Fonseca, R., Gutiérrez-Ortiz, J. I., Ayastuy, J. L., Gutiérrez-Ortiz, M. A., & González-Velasco, J. R. (2003a). Gas-phase catalytic combustion of chlorinated VOC binary mixtures. Applied Catalysis B: Environmental, 45, 13–21. DOI: 10.1016/s0926-3373(03)00106-1. 10.1016/S0926-3373(03)00106-1Suche in Google Scholar

[81] López-Fonseca, R., de Rivas, B., Gutiérrez-Ortiz, J. I., Aranzabal, A., & González-Velasco, J. R. (2003b). Enhanced activity of zeolites by chemical dealumination for chlorinated VOC abatement. Applied Catalysis B: Environmental, 41, 31–42. DOI: 10.1016/s0926-3373(02)00199-6. 10.1016/S0926-3373(02)00199-6Suche in Google Scholar

[82] López-Fonseca, R., Gutiérrez-Ortiz, J. I., & González-Velasco, J. R. (2004). Catalytic combustion of chlorinated hydrocarbons over H-BETA and PdO/H-BETA zeolite catalysts. Applied Catalysis A: General, 271, 39–46. DOI: 10.1016/j.apcata.2004.02.044. 10.1016/j.apcata.2004.02.044Suche in Google Scholar

[83] López-Fonseca, R., Gutiérrez-Ortiz, J. I., Gutiérrez-Ortiz, M. A., & González-Velasco, J. R. (2005a). Catalytic oxidation of aliphatic chlorinated volatile organic compounds over Pt/H-BETA zeolite catalyst under dry and humid conditions. Catalysis Today, 107-108, 200–207. DOI: 10.1016/ j.cattod.2005.07.091. 10.1016/j.cattod.2005.07.091Suche in Google Scholar

[84] López-Fonseca, R., Gutiérrez-Ortiz, J. I., & González-Velasco, J. R. (2005b). Noble metal loaded zeolites for the catalytic oxidation of chlorinated hydrocarbons. Reaction Kinetics and Catalysis Letters, 86, 127–133. DOI: 10.1007/s11144-005-0303-5. 10.1007/s11144-005-0303-5Suche in Google Scholar

[85] Lou, J. C., & Lee, S. S. (1997). Destruction of trichloromethane with catalytic oxidation. Applied Catalysis B: Environmental, 12, 111–123. DOI: 10.1016/s0926-3373(96)00071-9. 10.1016/S0926-3373(96)00071-9Suche in Google Scholar

[86] Manning, M. P. (1984). Fluid bed catalytic oxidation: An underdeveloped hazardous waste disposal technology. Hazardous Waste, 1, 41–65. DOI: 10.1089/hzw.1984.1.41. 10.1089/hzw.1984.1.41Suche in Google Scholar

[87] Matějová, J., Topka, J., Jirátová, K., & Šolcová, O. (2012). Total oxidation of model volatile organic compounds over some commercial catalysts. Applied Catalysis A: General, 443–444,40–49. DOI: 10.1016/j.apcata.2012.07.018. 10.1016/j.apcata.2012.07.018Suche in Google Scholar

[88] McMinn, T. E., Moates, F. C., & Richardson, J. T. (2001). Catalytic steam reforming of chlorocarbons: catalyst deactivation. Applied Catalysis B: Environmental, 31, 93–105. DOI: 10.1016/s0926-3373(00)00274-5. 10.1016/S0926-3373(00)00274-5Suche in Google Scholar

[89] Miranda, B., Díaz, E., Ordóñez, S., Vega, A., & Díez, F. V. (2006). Performance of alumina-supported noble metal catalysts for the combustion of trichloroethene at dry and wet conditions. Applied Catalysis B: Environmental, 64, 262–271. DOI: 10.1016/j.apcatb.2005.12.008. 10.1016/j.apcatb.2005.12.008Suche in Google Scholar

[90] Miranda, B., Díaz, E., Ordóñez, S., Vega, A., & Díez, F. V. (2007). Oxidation of trichloroethene over metal oxide catalysts: Kinetic studies and correlation with adsorption properties. Chemosphere, 66, 1706–1715. DOI: 10.1016/j.chemosphere.2006.07.016. 10.1016/j.chemosphere.2006.07.016Suche in Google Scholar

[91] Müller, H., Deller, K., Despeyroux, B., Peldszus, E., Kammerhofer, P., Kühn, W., Spielmannleitner, R., & Stöger, M. (1993). Catalytic purification of waste gases containing chlorinated hydrocarbons with precious metal catalysts. Catalysis Today, 17, 383–390. DOI: 10.1016/0920-5861(93)80041-x. 10.1016/0920-5861(93)80041-XSuche in Google Scholar

[92] Musialik-Piotrowska, A., & Mendyka, B. (2004). Catalytic oxidation of chlorinated hydrocarbons in two-component mixtures with selected VOCs. Catalysis Today, 90, 139–144. DOI: 10.1016/j.cattod.2004.04.019. 10.1016/j.cattod.2004.04.019Suche in Google Scholar

[93] Padilla, A. M., Corella, J., & Toledo, J. M. (1999). Total oxidation of some chlorinated hydrocarbons with commercial chromia based catalysts. Applied Catalysis B: Environmental, 22, 107–121. DOI: 10.1016/s0926-3373(99)00043-0. 10.1016/S0926-3373(99)00043-0Suche in Google Scholar

[94] Park, J. N., Lee, C. W., Chang, J. S., Park, S. E., & Shin, C. H. (2004). Catalytic oxidation of trichloroethylene over Pdloaded sulfated zirconia. Bulletin of the Korean Chemical Society, 25, 1355–1360. Suche in Google Scholar

[95] Paukshtis, E. A., Simonova, L. G., Zagoruiko, A. N., & Balzhinimaev, B. S. (2010). Oxidative destruction of chlorinated hydrocarbons on Pt-containing fiber-glass catalysts. Chemosphere, 79, 199–204. DOI: 10.1016/j.chemosphere.2010.01.050. 10.1016/j.chemosphere.2010.01.050Suche in Google Scholar PubMed

[96] Petrosius, S. C., Drago, R. S., Young, V., & Grunewald, G. C. (1993). Low-temperature decomposition of some halogenated hydrocarbons using metal oxide/porous carbon catalysts. Journal of the American Chemical Society, 115, 6131–6137. DOI: 10.1021/ja00067a031. 10.1021/ja00067a031Suche in Google Scholar

[97] Pitkäaho, S., Ojala, S., Maunula, T., Savimäki, A., Kinnunen, T., & Keiski, R. L. (2011a). Oxidation of dichloromethane and perchloroethylene as single compounds and in mixtures. Applied Catalysis B: Environmental, 102, 395–403. DOI: 10.1016/j.apcatb.2010.12.011. 10.1016/j.apcatb.2010.12.011Suche in Google Scholar

[98] Pitkäaho, S., Ojala, S., Kinnunen, T., Silvonen, R., & Keiski, R. L. (2011b). Catalytic oxidation of dichloromethane and perchloroethylene: Laboratory and industrial scale studies. Topics in Catalysis, 54, 1257–1265. DOI: 10.1007/s11244-011-9748-0. 10.1007/s11244-011-9748-0Suche in Google Scholar

[99] Pitkäaho, S., Nevanpera, T., Matejova, L., Ojala, S., & Kaiski, R. L. (2013). Oxidation of dichloromethane over Pt, Pd, Rh, and V2O5 catalysts supported on Al2O3, Al2O3-TiO2 and Al2O3-CeO2. Applied Catalysis B: Environmental, 138–139, 33–42. DOI: 10.1016/j.apcatb.2013.01.058. 10.1016/j.apcatb.2013.01.058Suche in Google Scholar

[100] Pope, D., Walker, D. S., & Moss, R. L. (1978). Evaluation of platinum-honeycomb catalysts for destructive oxidation of low concentrations of odorous compounds in air. Atmospheric Environment, 12, 1921–1927. DOI: 10.1016/0004-6981(78)90013-6. 10.1016/0004-6981(78)90013-6Suche in Google Scholar

[101] Poplawski, K., Lichtenberger, J., Keil, F. J., Schnitzlein, K., & Amiridis, M. D. (2000). Catalytic oxidation of 1,2-dichlorobenzene over ABO3-type perovskites. Catalysis Today, 62, 329–336. DOI: 10.1016/s0920-5861(00)00434-x. 10.1016/S0920-5861(00)00434-XSuche in Google Scholar

[102] Rachapudi, R., Chintawar, P. S., & Greene, H. L. (1999). Aging and structure/activity characteristics of Cr-ZSM-5 catalysts during exposure to chlorinated VOCs. Journal of Catalysis, 185, 58–72. DOI: 10.1006/jcat.1999.2494. 10.1006/jcat.1999.2494Suche in Google Scholar

[103] Ramanathan, K., & Spivey, J. J. (1989). Catalytic oxidation of 1,1-dichloroethane. Combustion Science and Technology, 63, 247–255. DOI: 10.1080/00102208908947130. 10.1080/00102208908947130Suche in Google Scholar

[104] Rogaume, T., Auzanneau, M., Jabouille, F., Goudeau, J. C., & Torero, J. L. (2002). The effects of different airflows on the formation of pollutants during wastes incineration. Fuel, 81, 2277–2288. DOI: 10.1016/s0016-2361(02)00151-5. 10.1016/S0016-2361(02)00151-5Suche in Google Scholar

[105] Sänger, M., Werther, J., & Ogada, T. (2001). NOx and N2O emission characteristics from fluidised bed combustion of semi-dried municipal sewage sludge. Fuel, 80, 167–177. DOI: 10.1016/s0016-2361(00)00093-4. 10.1016/S0016-2361(00)00093-4Suche in Google Scholar

[106] Schneider, R., Kießling, D., & Wendt, G. (2000). Cordierite monolith supported perovskite-type oxides — catalysts for the total oxidation of chlorinated hydrocarbons. Applied Catalysis B: Environmental, 28, 187–195. DOI: 10.1016/s0926-3373(00)00174-0. 10.1016/S0926-3373(00)00174-0Suche in Google Scholar

[107] Scirè, S., & Minicò, S. (2003). The role of the support in the oxidative destruction of chlorobenzene on Pt/zeolite catalysts: an FT-IR investigation. Catalysis Letters, 91, 199–205. DOI: 10.1023/b:catl.0000007155.59258.83. 10.1023/B:CATL.0000007155.59258.83Suche in Google Scholar

[108] Shaw, H., Wang, Y., Yu, T. C., & Cerkanowicz, A. E. (1993). Catalytic oxidation of trichloroethylene and methylene chloride. ACS Symposium Series, 518, 358–379. DOI: 10.1021/bk-1993-0518.ch017. 10.1021/bk-1993-0518.ch017Suche in Google Scholar

[109] Solymosi, F., Raskó, J., Papp, E., Oszkó, A., & Bánsági, T. (1995). Catalytic decomposition and oxidation of CH3Cl on Cr2O3-doped SnO2. Applied Catalysis A: General, 131, 55–72. DOI: 10.1016/0926-860x(95)00125-5. 10.1016/0926-860X(95)00125-5Suche in Google Scholar

[110] Spivey, J. J. (1987). Complete catalytic oxidation of volatile organics. Industrial & Engineering Chemistry Research, 26, 2165–2180. DOI: 10.1021/ie00071a001. 10.1021/ie00071a001Suche in Google Scholar

[111] Spivey, J. J., & Butt, J. B. (1992). Literature-review: Deactivation of catalysts in the oxidation of volatile organic compounds. Catalysis Today, 11, 465–500. DOI: 10.1016/0920-5861(92)80039-p. 10.1016/0920-5861(92)80039-PSuche in Google Scholar

[112] Stephan, K., Hackenberger, M., Kießling, D., & Wendt, G. (2004). Total oxidation of methane and chlorinated hydrocarbons on zirconia supported A1−x SrxMnO3 catalysts. Chemical Engineering & Technology, 27, 687–693. DOI: 10.1002/ceat.200400042. 10.1002/ceat.200400042Suche in Google Scholar

[113] Storaro, L., Ganzerla, R., Lenarda, M., Zanoni, R., Jiménez-López, A., Olivera-Pastor, P., & Rodríguez-Castellón, E. (1997). Catalytic behavior of chromia and chromium-doped alumina pillared clay materials for the vapor phase deep oxidation of chlorinated hydrocarbons. Journal of Molecular Catalysis A: Chemical, 115, 329–338. DOI: 10.1016/s1381-1169(96)00287-7. 10.1016/S1381-1169(96)00287-7Suche in Google Scholar

[114] Taralunga, M., Mijoin, J., & Magnoux, P. (2006). Catalytic destruction of 1,2-dichlorobenzene over zeolites. Catalysis Communications, 7, 115–121. DOI: 10.1016/j.catcom.2005.09.006. 10.1016/j.catcom.2005.09.006Suche in Google Scholar

[115] Tian, W., Fan, X. Y., Yang, H. S., & Zhang, X. B. (2010). Preparation of MnOx/TiO2 composites and their properties for catalytic oxidation of chlorobenzene. Journal of Hazardous Materials, 177, 887–891. DOI: 10.1016/j.jhazmat.2009.12.116. 10.1016/j.jhazmat.2009.12.116Suche in Google Scholar

[116] Toledo, J. M., Corella, J., & Sanz, A. (2001). Noble metal-based catalysts for total oxidation of chlorinated hydrocarbons. Environmental Progress, 20, 167–174. DOI: 10.1002/ep.67020 0312. Suche in Google Scholar

[117] Tseng, T. K., Wang, L., Ho, C. T., & Chu, H. (2010). The destruction of dichloroethane over a γ-alumina supported manganese oxide catalyst. Journal of Hazardous Materials, 178, 1035–1040. DOI: 10.1016/j.jhazmat.2010.02.044. 10.1016/j.jhazmat.2010.02.044Suche in Google Scholar

[118] van den Brink, R. W., Louw, R., & Mulder, P. (1998a). Formation of polychlorinated benzenes during the catalytic combustion of chlorobenzene using a Pt/γ-Al2O3 catalyst. Applied Catalysis B: Environmental, 16, 219–226. DOI: 10.1016/s0926-3373(97)00076-3. 10.1016/S0926-3373(97)00076-3Suche in Google Scholar

[119] van den Brink, R. W., Mulder, P., Louw, R., Sinquin, G., Petit, C., & Hindermann, J. P. (1998b). Catalytic oxidation of dichloromethane on γ-Al2O3: A combined flow and infrared spectroscopic study. Journal of Catalysis, 180, 153–160. DOI: 10.1006/jcat.1998.2274. 10.1006/jcat.1998.2274Suche in Google Scholar

[120] van den Brink, R. W., Louw, R., & Mulder, P. (2000). Increased combustion rate of chlorobenzene on Pt/γ-Al2O3 in binary mixtures with hydrocarbons and with carbon monoxide. Applied Catalysis B: Environmental, 25, 229–237. DOI: 10.1016/s0926-3373(99)00137-x. 10.1016/S0926-3373(99)00137-XSuche in Google Scholar

[121] Vu, V. H., Belkouch, J., Ould-Dris, A., & Taouk, B. (2009). Removal of hazardous chlorinated VOCs over Mn-Cu mixed oxide based catalyst. Journal of Hazardous Materials, 169, 758–765. DOI: 10.1016/j.jhazmat.2009.04.010. 10.1016/j.jhazmat.2009.04.010Suche in Google Scholar

[122] Wang, X. Y., Dai, Q. G., & Zheng, Y. (2006). Low-temperature catalytic combustion of trichloroethylene over La, Ce, and Pt catalysts supported on MCM-41. Chinese Journal of Catalysis, 27, 468–470. DOI: 10.1016/s1872-2067(06)60026-0. 10.1016/S1872-2067(06)60026-0Suche in Google Scholar

[123] Wang, X. Y., Kang, Q., & Li, D. (2008). Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts. Catalysis Communications, 9, 2158–2162. DOI: 10.1016/j.catcom.2008.04.021. 10.1016/j.catcom.2008.04.021Suche in Google Scholar

[124] Wang, X. Y., Kang, Q., & Li, D. (2009). Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts. Applied Catalysis B: Environmental, 86, 166–175. DOI: 10.1016/j.apcatb.2008.08.009. 10.1016/j.apcatb.2008.08.009Suche in Google Scholar

[125] Weber, H., Dimmling, W., & Möller, K. H. (1976). Environmental protection in the production of vinyl chloride monomer (VCM). DECHEMA Monographs, 80, 57–76. Suche in Google Scholar

[126] Weber, R., & Sakurai, T. (2001). Low temperature decomposition of PCB by TiO2-based V2O5/WO3 catalyst: evaluation of the relevance of PCDF formation and insights into the first step of oxidative destruction of chlorinated aromatics. Applied Catalysis B: Environmental, 34, 113–127. DOI: 10.1016/s0926-3373(01)00211-9. 10.1016/S0926-3373(01)00211-9Suche in Google Scholar

[127] Weldon, J., & Senkan, S. M. (1986). Catalytic oxidation of CH3Cl by Cr2O3. Combustion Science and Technology, 47, 229–237. DOI: 10.1080/00102208608923875. 10.1080/00102208608923875Suche in Google Scholar

[128] Windawi, H., & Wyatt, M. (1993). Catalytic destruction of halogenated volatile organic compounds: Mechanisms of platinum catalyst systems. Platinum Metals Review, 37, 186–193. Suche in Google Scholar

[129] Windawi, H., & Zhang, Z.C. (1996). Catalytic destruction of halogenated air toxins and the effect of admixture with VOCs. Catalysis Today, 30, 99–105. DOI: 10.1016/0920-5861(95)00331-2. 10.1016/0920-5861(95)00331-2Suche in Google Scholar

[130] Yasuhara, A., & Morita, M. (1990). Formation of chlorinated compounds in pyrolysis of trichloroethylene. Chemosphere, 21, 479–486. DOI: 10.1016/0045-6535(90)90018-o. 10.1016/0045-6535(90)90018-OSuche in Google Scholar

[131] Yim, S. D., Chang, K. H., Koh, D. J., Nam, I. S., & Kim, Y. G. (2000a). Catalytic removal of perchloroethylene (PCE) over supported chromium oxide catalysts. Catalysis Today, 63, 215–222. DOI: 10.1016/s0920-5861(00)00462-4. 10.1016/S0920-5861(00)00462-4Suche in Google Scholar

[132] Yim, S. D., Koh, D. J., Nam, I. S., & Kim, Y. G. (2000b). Effect of the catalyst supports on the removal of perchloroethylene (PCE) over chromium oxide catalysts. Catalysis Letters, 64, 201–207. DOI: 10.1023/a:1019076112539. 10.1023/A:1019076112539Suche in Google Scholar

[133] Yim, S. D., & Nam, I. S. (2004). Characteristics of chromium oxides supported on TiO2 and Al2O3 for the decomposition of perchloroethylene. Journal of Catalysis, 221, 601–611. DOI: 10.1016/j.jcat.2003.09.026. 10.1016/j.jcat.2003.09.026Suche in Google Scholar

[134] Yu, T. C., Shaw, H., & Farrauto, R. J. (1992). Catalytic oxidation of trichloroethylene over PdO catalyst on γ-Al2O3. ACS Symposium Series, 495, 141–152. DOI: 10.1021/bk-1992-0495.ch011. 10.1021/bk-1992-0495.ch011Suche in Google Scholar

[135] Zwinkels, M. F. M., Järås, S. G., Menon, P. G., & Griffin, T. A. (1993). Catalytic materials for high-temperature combustion. Catalysis Reviews: Science and Engineering, 35, 319–358. DOI: 10.1080/01614949308013910. 10.1080/01614949308013910Suche in Google Scholar

Published Online: 2014-5-23
Published in Print: 2014-9-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Environmental catalysis — Topical issue
  2. Structured catalysts for methanol-to-olefins conversion: a review
  3. Diesel soot combustion catalysts: review of active phases
  4. State of the art in catalytic oxidation of chlorinated volatile organic compounds
  5. Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins
  6. Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation
  7. Valorisation of bio-oil resulting from fast pyrolysis of wood
  8. Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x MnxO in cellulose conversion
  9. Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process
  10. Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity
  11. Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)
  12. Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode
  13. CdS/TiO2 composite films for methylene blue photodecomposition under visible light irradiation and non-photocorrosion of cadmium sulfide
  14. Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate
  15. Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air
  16. Solid waste decontamination by thermal desorption and catalytic oxidation methods
Heruntergeladen am 18.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0505-7/html?lang=de
Button zum nach oben scrollen