Home Theoretical investigation on the reaction of HS+ with CH3NH2
Article
Licensed
Unlicensed Requires Authentication

Theoretical investigation on the reaction of HS+ with CH3NH2

  • Li-Li Zhang EMAIL logo , Hui-Ling Liu , Hao Tang and Xu-Ri Huang
Published/Copyright: September 17, 2013
Become an author with De Gruyter Brill

Abstract

The singlet and triplet potential energy surfaces for the reaction of HS+ with the simplest primary amine, CH3NH2, were determined at the CCSD(T)/6-311+G(d,p) level using the B3LYP/6-311G(d,p) and QCISD/6-311G(d,p) geometries. All possible reaction channels were explored. The results show that three paths on the singlet potential energy surface and one path on the triplet potential energy surface are competitive. These four feasible paths provide products which are presented in the paper and they are consistent with previous experimental results. On the other hand, the stationary points involved in the most favourable path all lie below those of the reactant and thus the title reaction is expected to be rapid, which is also consistent with the experiment.

[1] Atroshchenko, Y. M., Shakhkel’dyan, I. E., Borbulevich, O. Y., Shchukin, A. N., Antipin, M. Y., & Khrustalev, V. N. (2005). Formation of isomeric 3-azabicyclo[3.3.1]nonanes in a reaction of 1-(2-hydroxyethoxy)-2,4-dinitrobenzene with sodium borohydride, formaldehyde, and methylamine. Russian Journal of Organic Chemistry, 41, 1683–1689. DOI: 10.1007/s11178-006-0019-7. http://dx.doi.org/10.1007/s11178-006-0019-710.1007/s11178-006-0019-7Search in Google Scholar

[2] Baek, S. J., Choi, K. W., Choi, Y. S., & Kim, S. K. (2003a). Spectroscopy and dynamics of methylamine. I. Rotational and vibrational structures of CH3NH2 and CH3ND2 in states. The Journal of Chemical Physics, 118, 11026–11039. DOI: 10.1063/1.1575734. http://dx.doi.org/10.1063/1.157573410.1063/1.1575734Search in Google Scholar

[3] Baek, S. J., Choi, K. W., Choi, Y. S., & Kim, S. K. (2003b). Spectroscopy and dynamics of methylamine. II. Rotational and vibrational structures of CH3NH2 and CH3ND2 in cationic D0 states. The Journal of Chemical Physics, 118, 11040–11047. DOI: 10.1063/1.1575735. http://dx.doi.org/10.1063/1.157573510.1063/1.1575735Search in Google Scholar

[4] Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913. http://dx.doi.org/10.1063/1.46491310.1063/1.464913Search in Google Scholar

[5] Cho, J., & Choi, C. H. (2011). Thermal decomposition mechanisms of methylamine, ethylamine, and 1-propylamine on Si(100)-2 × 1 surface. The Journal of Chemical Physics, 134, 194701. DOI: 10.1063/1.3589362. http://dx.doi.org/10.1063/1.358936210.1063/1.3589362Search in Google Scholar PubMed

[6] Choi, M., Sukumar, N., Mathews, F. S., Liu, A., & Davidson, V. L. (2011). Proline 96 of the copper ligand loop of amicyanin regulates electron transfer from methylamine dehydrogenase by positioning other residues at the protein-protein interface. Biochemistry, 50, 1265–1273. DOI: 10.1021/bi101794y. http://dx.doi.org/10.1021/bi101794y10.1021/bi101794ySearch in Google Scholar PubMed PubMed Central

[7] Conklin, D. J., Cowley, H. R., Wiechmann, R. J., Johnson, G. H., Trent, M. B., & Boor, P. J. (2004). Vasoactive effects of methylamine in isolated human blood vessels: role of semicarbazide-sensitive amine oxidase, formaldehyde, and hydrogen peroxide. American Journal of Physiology-Heart and Circulatory Physiology, 286, H667–H676. DOI: 10.1152/ajpheart.00690.2003. http://dx.doi.org/10.1152/ajpheart.00690.200310.1152/ajpheart.00690.2003Search in Google Scholar PubMed

[8] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Jr., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J. A. (2004). Gaussian 03, Revision D.02 [computer software]. Wallingford, CT, USA: Gaussian, Inc. Search in Google Scholar

[9] Gonzalez, C., & Schlegel, H. B. (1989). An improved algorithm for reaction path following. The Journal of Chemical Physics, 90, 2154–2161. DOI: 10.1063/1.456010. http://dx.doi.org/10.1063/1.45601010.1063/1.456010Search in Google Scholar

[10] Hamdani, S., Joly, D., Carpentier, R., & Tajmir-Riahi, H. A. (2009). The effect of methylamine on the solution structures of human and bovine serum albumins. Journal of Molecular Structure, 936, 80–86. DOI: 10.1016/j.molstruc.2009.07.019. http://dx.doi.org/10.1016/j.molstruc.2009.07.01910.1016/j.molstruc.2009.07.019Search in Google Scholar

[11] Ilyushin, V. V., Alekseev, E. A., Dyubko, S. F., Motiyenko, R. A., & Hougen, J. T. (2005). The rotational spectrum of the ground state of methylamine. Journal of Molecular Spectroscopy, 229, 170–187. DOI: 10.1016/j.jms.2004.08.022. http://dx.doi.org/10.1016/j.jms.2004.08.02210.1016/j.jms.2004.08.022Search in Google Scholar

[12] Irgibaeva, I. S. (2004). Determination of the parameters of multidimension vibration Hamiltonian of CH3NH2 from quantum chemical data. International Journal of Quantum Chemistry, 96, 210–218. DOI: 10.1002/qua.10648. http://dx.doi.org/10.1002/qua.1064810.1002/qua.10648Search in Google Scholar

[13] Jackson, D. M., Stibrich, N. J., Adams, N. G., & Babcock, L. M. (2005). A selected ion flow tube study of the reactions of a sequence of ions with amines. International Journal of Mass Spectrometry, 243, 115–120. DOI: 10.1016/j.ijms.2005.02.004. http://dx.doi.org/10.1016/j.ijms.2005.02.00410.1016/j.ijms.2005.02.004Search in Google Scholar

[14] Kerkeni, B., & Clary, D. C. (2007). Quantum scattering study of the abstraction reactions of H atoms from CH3NH2. Chemical Physics Letters, 438, 1–7. DOI: 10.1016/j.cplett.2007.02.046. http://dx.doi.org/10.1016/j.cplett.2007.02.04610.1016/j.cplett.2007.02.046Search in Google Scholar

[15] Kua, J., Krizner, H. E., & De Haan, D. O. (2011). Thermodynamics and kinetics of imidazole formation from glyoxal, methylamine, and formaldehyde: A computational study. The Journal of Physical Chemistry A, 115, 1667–1675. DOI: 10.1021/jp111527x. http://dx.doi.org/10.1021/jp111527x10.1021/jp111527xSearch in Google Scholar PubMed

[16] Li, H., & Oshima, Y. (2005). Elementary reaction mechanism of methylamine oxidation in supercritical water. Industrial & Engineering Chemistry Research, 44, 8756–8764. DOI: 10.1021/ie0580506. http://dx.doi.org/10.1021/ie058050610.1021/ie0580506Search in Google Scholar

[17] Lin, Z., Li, H., Luo, H., Zhang, Y., & Luo, W. (2011). Benzylamine and methylamine, substrates of semicarbazidesensitive amine oxidase, attenuate inflammatory response induced by lipopolysaccharide. International Immunopharmacology, 11, 1079–1089. DOI: 10.1016/j.intimp.2011.03.002. http://dx.doi.org/10.1016/j.intimp.2011.03.00210.1016/j.intimp.2011.03.002Search in Google Scholar PubMed

[18] Liu, P., Liu, J., Zhang, D., & Zhang, C. (2010). A comparative theoretical study of the reactivities of the Al+ and Cu+ ions toward methylamine and dimethylamine. International Journal of Quantum Chemistry, 110, 1583–1593. DOI: 10.1002/qua.22314. 10.1002/qua.22314Search in Google Scholar

[19] Lu, X., Wei, S., Guo, W., & Wu, C. M. L. (2010). Mechanistic insight into the gas-phase reactions of methylamine with ground state Co+ (3F) and Ni+(2D). The Journal of Physical Chemistry A, 114, 12490–12497. DOI: 10.1021/jp106397g. http://dx.doi.org/10.1021/jp106397g10.1021/jp106397gSearch in Google Scholar PubMed

[20] Lv, C. Q., Li, J., Ling, K. C., Shang, Z. F., & Wang, G. C. (2010). Methylamine decomposition on nickel surfaces: A density functional theory study. Surface Science, 604, 779–787. DOI: 10.1016/j.susc.2010.01.027. http://dx.doi.org/10.1016/j.susc.2010.01.02710.1016/j.susc.2010.01.027Search in Google Scholar

[21] Naganathappa, M., & Chaudhari, A. (2010). Absorption and vibrational spectra of methylamine and its ions using quantum chemical methods. Advances in Space Research, 45, 521–526. DOI: 10.1016/j.asr.2009.09.010. http://dx.doi.org/10.1016/j.asr.2009.09.01010.1016/j.asr.2009.09.010Search in Google Scholar

[22] Pople, J. A., Head-Gordon, M., & Raghavachari, K. (1987). Quadratic configuration interaction. A general technique for determining electron correlation energies. The Journal of Chemical Physics, 87, 5968–5975. DOI: 10.1063/1.453520. http://dx.doi.org/10.1063/1.45352010.1063/1.453520Search in Google Scholar

[23] Rudić, S., Murray, C., Harvey, J. N., & Orr-Ewing, A. J. (2003). The product branching and dynamics of the reaction of chlorine atoms with methylamine. Physical Chemistry Chemical Physics, 5, 1205–1212. DOI: 10.1039/b211626j. http://dx.doi.org/10.1039/b211626j10.1039/b211626jSearch in Google Scholar

[24] Singh, P. C., Shen, L., Zhou, J., Schlegel, H. B., & Suits, A. G. (2010). Photodissociation dynamics of methylamine cation and its relevance to titan’s ionosphere. The Astrophysical Journal, 710, 112–116. DOI: 10.1088/0004-637x/710/1/112. http://dx.doi.org/10.1088/0004-637X/710/1/11210.1088/0004-637X/710/1/112Search in Google Scholar

[25] Smith, D., Adams, N. G., & Lindinger, W. (1981). Reactions of the HnS+ ions (n = 0 to 3) with several molecular gases at thermal energies. The Journal of Chemical Physics, 75, 3365–3370. DOI: 10.1063/1.442498. http://dx.doi.org/10.1063/1.44249810.1063/1.442498Search in Google Scholar

[26] Tian, W., Wang, W. L., Zhang, Y., & Wang, W. N. (2009). Direct dynamics study on the mechanism and the kinetics of the reaction of CH3NH2 with OH. International Journal of Quantum Chemistry, 109, 1566–1575. DOI: 10.1002/qua.22000. http://dx.doi.org/10.1002/qua.2200010.1002/qua.22000Search in Google Scholar

[27] Tiwary, A. S., & Mukherjee, A. K. (2009). Mechanism of the CH3NH2-HNO2 reaction: Ab initio DFT/TST study. Journal of Molecular Structure: THEOCHEM, 909, 57–65. DOI: 10.1016/j.theochem.2009.05.020. http://dx.doi.org/10.1016/j.theochem.2009.05.02010.1016/j.theochem.2009.05.020Search in Google Scholar

[28] Xiao, S., & Yu, P. H. (2009). A fluorometric high-performance liquid chromatography procedure for simultaneous determination of methylamine and aminoacetone in blood and tissues. Analytical Biochemistry, 384, 20–26. DOI: 10.1016/j.ab.2008.09.029. http://dx.doi.org/10.1016/j.ab.2008.09.02910.1016/j.ab.2008.09.029Search in Google Scholar

[29] Zeng, Y., Meng, L., Zheng, S., & Wang, D. (2003). B3LYP calculations of the potential energy surfaces of the thermal dissociations and the triplet ground state of pyrolysisproducts XN \(\left( {x^3 \sum ^ - } \right)\) for halogen azides XN3 (X: F, Cl, Br, I). Chemical Physics Letters, 378, 128–134. DOI: 10.1016/s0009-2614(03)01265-x. http://dx.doi.org/10.1016/S0009-2614(03)01265-X10.1016/S0009-2614(03)01265-XSearch in Google Scholar

Published Online: 2013-9-17
Published in Print: 2014-1-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Immobilisation of Clostridium spp. for production of solvents and organic acids
  2. A multi-analytical approach to amber characterisation
  3. Performance and lifetime of slurry packed capillary columns for high performance liquid chromatography
  4. Simultaneous determination of 32 antibiotics in aquaculture products using LC-MS/MS
  5. In vitro and in silico inhibition of angiotensin-converting enzyme by carbohydrates and cyclitols
  6. 5-Bromo- and 3,5-dibromo-2-hydroxy-N-phenylbenzamides — inhibitors of photosynthesis
  7. Biotransformation of iminodiacetonitrile to iminodiacetic acid by Alcaligenes faecalis cells immobilized in ACA-membrane liquid-core capsules
  8. Kinetics of metribuzin degradation by colloidal manganese dioxide in absence and presence of surfactants
  9. Asymmetric deformation of bubble shape: cause or effect of vortex-shedding?
  10. Equilibrium of chiral extraction of 4-nitro-d,l-phenylalanine with BINAP metal complexes
  11. Influence of superplasticizers on the course of Portland cement hydration
  12. Effect of valence of copper on adsorption of dimethyl sulfide from liquid hydrocarbon streams on activated bentonite
  13. Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution
  14. Effect of exopolymeric substances on the kinetics of sorption and desorption of trivalent chromium in soil
  15. Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols
  16. Kinetics of chloride substitution in [Pt(bpma)Cl]+ and [Pt(gly-met-S,N,N)Cl] complexes by thiourea, nitrites, and iodides
  17. Synthesis of a photoactive gemini surfactant and its use in AGET ATRP miniemulsion polymerisation and UV curing
  18. Theoretical investigation on the reaction of HS+ with CH3NH2
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0412-y/pdf?lang=en
Scroll to top button