Home A comparative study on direct production of ethyl levulinate from glucose in ethanol media catalysed by different acid catalysts
Article
Licensed
Unlicensed Requires Authentication

A comparative study on direct production of ethyl levulinate from glucose in ethanol media catalysed by different acid catalysts

  • Gui-Zhuan Xu EMAIL logo , Chun Chang , Wei-Na Zhu , Bo Li , Xiao-Jian Ma and Feng-Guang Du
Published/Copyright: June 28, 2013
Become an author with De Gruyter Brill

Abstract

Direct production of ethyl levulinate (EL) from glucose catalysed by a liquid acid catalyst (sulfuric acid) and a solid acid zeolite catalyst USY NKF-7 (USY) in ethanol media was investigated in this study. Effects of the initial glucose concentration (C G0), reaction temperature (T), amount of acid catalyst, and water addition on the yields of EL were compared, respectively. The results show that higher yield of EL can be obtained at lower C G0. Higher temperature and acid concentration can accelerate the reaction rate, but the formation rate of the by-products increases more quickly than that of EL. Water addition also can result in the decrease of the yield of EL. Although sulfuric acid is efficient in the production of EL, the USY is more efficient in converting glucose to 5-ethoxymethyl-2-furaldehyde. Moreover, the use of USY can limit the diethyl ether production, and it can be reused for multiple times.

[1] Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chemistry, 12, 539–554. DOI: 10.1039/b922014c. http://dx.doi.org/10.1039/b922014c10.1039/b922014cSearch in Google Scholar

[2] Chang, C., Jiang, X. X., Zhang, T., & Li, B. (2012a). Effect of reaction parameters on the production of ethyl levulinate from glucose in ethanol. Advanced Materials Research, 512–515, 388–391. DOI: 10.4028/www.scientific.net/amr.512-515.388. http://dx.doi.org/10.4028/www.scientific.net/AMR.512-515.38810.4028/www.scientific.net/AMR.512-515.388Search in Google Scholar

[3] Chang, C., Xu, G., & Jiang, X. (2012b). Production of ethyl levulinate by direct conversion of wheat straw in ethanol media. Bioresource Technology, 121, 93–99. DOI: 10.1016/j.biortech.2012.06.105. http://dx.doi.org/10.1016/j.biortech.2012.06.10510.1016/j.biortech.2012.06.105Search in Google Scholar

[4] Chia, M., & Dumesic, J. A. (2011). Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts. Chemical Communications, 47, 12233–12235. DOI: 10.1039/c1cc14748j. http://dx.doi.org/10.1039/c1cc14748j10.1039/c1cc14748jSearch in Google Scholar

[5] Dharne, S., & Bokade, V. V. (2011). Esterification of levulinic acid to n-butyl levulinate over heteropolyacid supported on acid-treated clay. Journal of Natural Gas Chemistry, 20, 18–24. DOI: 10.1016/s1003-9953(10)60147-8. http://dx.doi.org/10.1016/S1003-9953(10)60147-810.1016/S1003-9953(10)60147-8Search in Google Scholar

[6] Fernandes, D. R., Rocha, A. S., Mai, E. F., Mota, C. J. A., & Teixeira da Silva, V. (2012). Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Applied Catalysis A: General, 425-426, 199–204. DOI: 10.1016/j.apcata.2012.03.020. http://dx.doi.org/10.1016/j.apcata.2012.03.02010.1016/j.apcata.2012.03.020Search in Google Scholar

[7] Garves, K. (1988). Acid catalyzed degradation of cellulose in alcohols. Journal of Wood Chemistry and Technology, 8, 121–134. DOI: 10.1080/02773818808070674. http://dx.doi.org/10.1080/0277381880807067410.1080/02773818808070674Search in Google Scholar

[8] Gürbüz, E. I., Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2011). Reactive extraction of levulinate esters and conversion to γ-valerolactone for production of liquid fuels. Chem-SusChem, 4, 357–361 DOI: 10.1002/cssc.201000396. 10.1002/cssc.201000396Search in Google Scholar PubMed

[9] Hu, X., Lievens, C., Larcher, A., & Li, C. Z. (2011). Reaction pathways of glucose during esterification: Effects of reaction parameters on the formation of humin type polymers. Bioresource Technology, 102, 10104–10113. DOI: 10.1016/j.biortech.2011.08.040. http://dx.doi.org/10.1016/j.biortech.2011.08.04010.1016/j.biortech.2011.08.040Search in Google Scholar PubMed

[10] Joshi, H., Moser, B. R., Toler, J., Smith, W. F., & Walker, T. (2011). Ethyl levulinate: A potential bio-based diluent for biodiesel which improves cold flow properties. Biomass and Bioenergy, 35, 3262–3266. DOI: 10.1016/j.biombioe.2011.04.020. http://dx.doi.org/10.1016/j.biombioe.2011.04.02010.1016/j.biombioe.2011.04.020Search in Google Scholar

[11] Lange, J. P., van de Graaf, W. D., & Haan, R. J. (2009). Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts. ChemSusChem, 2, 437–441. DOI: 10.1002/cssc.200800216. http://dx.doi.org/10.1002/cssc.20080021610.1002/cssc.200800216Search in Google Scholar PubMed

[12] Lee, A., Chaibakhsh, N., Abdul Rahman, M. B., Basri, M., & Tejo, B. A. (2010). Optimized enzymatic synthesis of levulinate ester in solvent-free system. Industrial Crops and Products, 32, 246–251. DOI: 10.1016/j.indcrop.2010.04.022. http://dx.doi.org/10.1016/j.indcrop.2010.04.02210.1016/j.indcrop.2010.04.022Search in Google Scholar

[13] Le Van Mao, R., Zhao, Q., Dima, G., & Petraccone, D. (2011). New process for the acid-catalyzed conversion of cellulosic biomass (AC3B) into alkyl levulinates and other esters using a unique one-pot system of reaction and product extraction. Catalysis Letters, 141, 271–276. DOI: 10.1007/s10562-010-0493-y. http://dx.doi.org/10.1007/s10562-010-0493-y10.1007/s10562-010-0493-ySearch in Google Scholar

[14] Mascal, M., & Nikitin, E. B. (2010a). Comment on processes for the direct conversion of cellulose or cellulosic biomass into levulinate esters. ChemSusChem, 3, 1349–1351. DOI: 10.1002/cssc.201000326. http://dx.doi.org/10.1002/cssc.20100032610.1002/cssc.201000326Search in Google Scholar PubMed

[15] Mascal, M., & Nikitin, E. B. (2010b). High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via 5-(chloromethyl)furfural. Green Chemistry, 12, 370–373. DOI: 10.1039/b918922j. http://dx.doi.org/10.1039/b918922j10.1039/B918922JSearch in Google Scholar

[16] Murat Sen, S., Henao, C. A., Braden, D. J., Dumesic, J. A., & Maravelias, C. T. (2012). Catalytic conversion of lignocellulosic biomass to fuels: Process development and technoeconomic evaluation. Chemical Engineering Science, 67, 57–67. DOI: 10.1016/j.ces.2011.07.022. http://dx.doi.org/10.1016/j.ces.2011.07.02210.1016/j.ces.2011.07.022Search in Google Scholar

[17] Olson, E. S., Kjelden, M. R., Schlag, A. J., & Sharma, R. K. (2001). Levulinate esters from biomass wastes. ACS Symposium Series, 784, 51–63. DOI: 10.1021/bk-2001-0784.ch005. http://dx.doi.org/10.1021/bk-2001-0784.ch00510.1021/bk-2001-0784.ch005Search in Google Scholar

[18] Peng, L., Lin, L., Li, H., & Yang, Q. (2011a). Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts. Applied Energy, 88, 4590–4596. DOI: 10.1016/j.apenergy.2011.05.049. http://dx.doi.org/10.1016/j.apenergy.2011.05.04910.1016/j.apenergy.2011.05.049Search in Google Scholar

[19] Peng, L., Lin, L., Zhang, J., Shi, J., & Liu, S. (2011b). Solid acid catalyzed glucose conversion to ethyl levulinate. Applied Catalysis A: General, 397, 259–265. DOI: 10.1016/j.apcata.2011.03.008. http://dx.doi.org/10.1016/j.apcata.2011.03.00810.1016/j.apcata.2011.03.008Search in Google Scholar

[20] Peng, L., Lin, L., & Li, H. (2012). Extremely low sulfuric acid catalyst system for synthesis of methyl levulinate from glucose. Industrial Crops and Products, 40, 136–144. DOI: 10.1016/j.indcrop.2012.03.007. http://dx.doi.org/10.1016/j.indcrop.2012.03.00710.1016/j.indcrop.2012.03.007Search in Google Scholar

[21] Rataboul, F., & Essayem, N. (2011). Cellulose reactivity in supercritical methanol in the presence of solid acid catalysts: Direct synthesis of methyl-levulinate. Industrial & Engineering Chemistry Research, 50, 799–805. DOI: 10.1021/ie101616e. http://dx.doi.org/10.1021/ie101616e10.1021/ie101616eSearch in Google Scholar

[22] Saravanamurugan, S., & Riisager, A. (2012). Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono- and disaccharides. Catalysis Communications, 17, 71–75. DOI: 10.1016/j.catcom.2011.10.001. http://dx.doi.org/10.1016/j.catcom.2011.10.00110.1016/j.catcom.2011.10.001Search in Google Scholar

Published Online: 2013-6-28
Published in Print: 2013-11-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0410-0/html?lang=en
Scroll to top button