Abstract
A model-based sensitivity analysis was performed in order to evaluate the importance of the individual operating parameters of a three-phase fluidised-bed biological reactor used for removing mercury ions from wastewater. The parameters analysed involve the immobilised biomass load (bacteria P. putida) on alginate beads, particle size, inlet flow-rate, mercury ion loads in the fed wastewater, and the solid fraction in the reactor. Predictions were generated by using pseudo-first-order, Michaelis-Menten, or pseudo-Haldane kinetic models. The results highlight the major influence of the biomass/solid load and of the liquid residence time on the reactor efficiency. Also, the resultant significant differences in the model predictions underline the importance of using a more accurate kinetic model for process design and control purposes.
[1] Alluri, H. K., Ronda, S. R., Settalluri, V. S., Bondili, J. S., Suryanarayana, V., & Venkateshwar, P. (2007). Biosorption: An eco-friendly alternative for heavy metal removal. African Journal of Biotechnology, 6, 2924–2931. 10.5897/AJB2007.000-2461Suche in Google Scholar
[2] Berne, F., & Cordonnier, J. (1995). Industrial water treatment: Refining, petrochemicals & gas processing techniques. Paris, France: Gulf. Suche in Google Scholar
[3] Bhattacharyya, A., Dutta, S., De, P., Ray, P., & Basu, S. (2010). Removal of mercury (II) from aqueous solution using papain immobilized on alginate bead: Optimization of immobilization condition and modeling of removal study. Bioresource Technology 101, 9421–9428. DOI: 10.1016/j.biortech.2010.06.126. http://dx.doi.org/10.1016/j.biortech.2010.06.12610.1016/j.biortech.2010.06.126Suche in Google Scholar PubMed
[4] Cain, A., Vannela, R., & Woo, L. K. (2008). Cyanobacteria as a biosorbent for mercuric ion. Bioresource Technology, 99, 6578–6586. DOI: 10.1016/j.biortech.2007.11.034. http://dx.doi.org/10.1016/j.biortech.2007.11.03410.1016/j.biortech.2007.11.034Suche in Google Scholar PubMed
[5] Carvalho, G., Almeida, B., Fradinho, J., Oehmen, A., Reis, M. A. M., & Crespo, M. T. B. (2011). Microbial characterization of mercury-reducing mixed cultures enriched with different carbon sources. Microbes and Environments, 26, 293–300, DOI: 10.1264/jsme2.me11112. http://dx.doi.org/10.1264/jsme2.ME1111210.1264/jsme2.ME11112Suche in Google Scholar PubMed
[6] Chen, S. L., Kim, E. K., Shuler, M. L., & Wilson, D. B. (1998). Hg2+ removal by genetically engineered Escherichia coli in a hollow fiber bioreactor. Biotechnology Progress, 14, 667–671. DOI: 10.1021/bp980072i. http://dx.doi.org/10.1021/bp980072i10.1021/bp980072iSuche in Google Scholar PubMed
[7] Dąbrowska, L. (2012). Speciation of heavy metals in sewage sludge after mesophilic and thermophilic anaerobic digestion. Chemical Papers, 66, 598–606. DOI: 10.2478/s11696-011-0128-9. http://dx.doi.org/10.2478/s11696-011-0128-910.2478/s11696-011-0128-9Suche in Google Scholar
[8] Deckwer, W. D., Becker, F. U., Ledakowicz, S., & Wagner-Döbler, I. (2004). Microbial removal of ionic mercury in a three-phase fluidized bed reactor. Environmental Science & Technology, 38, 1858–1865. DOI: 10.1021/es0300517. http://dx.doi.org/10.1021/es030051710.1021/es0300517Suche in Google Scholar PubMed
[9] Demirbas, A. (2008). Heavy metal adsorption onto agro-based waste materials: A review. Journal of Hazardous Materials, 157, 220–229. DOI: 10.1016/j.jhazmat.2008.01.024. http://dx.doi.org/10.1016/j.jhazmat.2008.01.02410.1016/j.jhazmat.2008.01.024Suche in Google Scholar PubMed
[10] Di Natale, F., Lancia, A., Molino, A., Di Natale, M., Karatza, D., & Musmarra, D. (2006). Capture of mercury ions by natural and industrial materials. Journal of Hazardous Materials, 132, 220–225. DOI: 10.1016/j.jhazmat.2005.09.046. http://dx.doi.org/10.1016/j.jhazmat.2005.09.04610.1016/j.jhazmat.2005.09.046Suche in Google Scholar PubMed
[11] Doran, P. M. (1995). Bioprocess engineering principles. Amsterdam, The Netherlands: Elsevier. Suche in Google Scholar
[12] European Commission (2000). Directive 2000/60/EC of the European Parliament and of The Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities, L 327, 1–72. Suche in Google Scholar
[13] Green-Ruiz, C. (2006). Mercury(II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary. Bioresource Technology, 97, 1907–1911. DOI: 10.1016/j.biortech.2005.08.014. http://dx.doi.org/10.1016/j.biortech.2005.08.01410.1016/j.biortech.2005.08.014Suche in Google Scholar PubMed
[14] Hosseini-Bandegharaei, A., Hosseini, M. S., Jalalabadi, Y., Sarwghadi, M., Nedaie, M., Taherian, A., Ghaznavi, A., & Eftekhari, A. (2011). Removal of Hg(II) from aqueous solutions using a novel impregnated resin containing 1-(2-thiazolylazo)-2-naphthol (TAN). Chemical Engineering Journal, 168, 1163–1173. DOI: 10.1016/j.cej.2011.02.004. http://dx.doi.org/10.1016/j.cej.2011.02.00410.1016/j.cej.2011.02.004Suche in Google Scholar
[15] Jördening, H. J., & Buchholz, K. (2004). Fixed film stationary bed and fluidized bed reactors. In H. J. Jördening, & J. Winter (Eds.), Environmental biotechnology: Concept and Applications (pp. 135–162). New York, NY, USA: Wiley. http://dx.doi.org/10.1002/352760428610.1002/3527604286Suche in Google Scholar
[16] Lambert, D. P. (1996). Ventilation criteria for IDMS facility (WSRC-RP-96-0282). Aiken, SC, USA: Westinghouse Savannah River. (DE-AC09-89SR18035) http://dx.doi.org/10.2172/39276910.2172/392769Suche in Google Scholar
[17] Leonhäuser, J., Röhricht, M., Wagner-Döbler, I., & Deckwer, W. D. (2006), Reaction engineering aspects of microbial mercury removal. Engineering in Life Sciences, 6, 139–148. DOI: 10.1002/elsc.200620904 http://dx.doi.org/10.1002/elsc.20062090410.1002/elsc.200620904Suche in Google Scholar
[18] Maria, G. (2009). A whole-cell model to simulate the mercuric ion reduction by E. coli under stationary and perturbed conditions. Chemical and Biochemical Engineering Quarterly, 23, 323–341. Suche in Google Scholar
[19] Maria, G. (2010). A dynamic model to simulate the genetic regulatory circuit controlling the mercury ion uptake by E. coli cells. Revista de Chimie, 61, 172–186. Suche in Google Scholar
[20] Moser, A. (1988). Bioprocess technology: Kinetics and reactors. New York, NY, USA: Springer. http://dx.doi.org/10.1007/978-1-4613-8748-010.1007/978-1-4613-8748-0Suche in Google Scholar
[21] O’Connell, D. W., Birkinshaw, C., & O’Dwyer, T. F. (2008). Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresource Technology, 99, 6709–6724. DOI: 10.1016/j.biortech.2008.01.036. http://dx.doi.org/10.1016/j.biortech.2008.01.03610.1016/j.biortech.2008.01.036Suche in Google Scholar PubMed
[22] Oehmen, A., Fradinho, J., Serra, S., Carvalho, G., Capelo, J. L., Velizarov, S., Crespo, J. G., & Reis, M. A. M. (2009). The effect of carbon source on the biological reduction of ionic mercury. Journal of Hazardous Materials, 165, 1040–1048. DOI: 10.1016/j.jhazmat.2008.10.094. http://dx.doi.org/10.1016/j.jhazmat.2008.10.09410.1016/j.jhazmat.2008.10.094Suche in Google Scholar PubMed
[23] Philippidis, G. P., Malmberg, L. H., Hu, W. S., & Schottel, J. L. (1991). Effect of gene amplification on mercuric ion reduction activity of Escherichia coli. Applied and Environmental Microbiology, 57, 3558–3564. 10.1128/aem.57.12.3558-3564.1991Suche in Google Scholar PubMed PubMed Central
[24] Rassis, D. K., Saguy, I. S., & Nussinovitch, A. (1998). Physical properties of alginate — Starch cellular sponges. Journal of Agriculture and Food Chemistry, 46, 2981–2987. DOI: 10.1021/jf971071t. http://dx.doi.org/10.1021/jf971071t10.1021/jf971071tSuche in Google Scholar
[25] Trambouze, P., Van Landeghem, H., & Wauquier, J. P. (1988). Chemical reactors: Design, engineering, operation. Paris, France: éditions Technip. Suche in Google Scholar
[26] Varma, A., Morbidelli, M., & Wu, H. (1999). Parametric sensitivity in chemical systems. Cambridge, UK: Cambridge University Press. http://dx.doi.org/10.1017/CBO978051172177910.1017/CBO9780511721779Suche in Google Scholar
[27] von Canstein, H., Li, Y., Timmis, K. N., Deckwer, W. D., & Wagner-Döbler, I. (1999). Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain. Applied and Environmental Microbiology, 65, 5279–5284. 10.1128/AEM.65.12.5279-5284.1999Suche in Google Scholar PubMed PubMed Central
[28] Wagner-Döbler, I., von Canstein, H., Li, Y., Timmis, K. N., & Deckwer, W. D. (2000). Removal of mercury from chemical wastewater by microorganisms in technical scale. Environmental Science & Technology, 34, 4628–4634. DOI: 10.1021/es0000652. http://dx.doi.org/10.1021/es000065210.1021/es0000652Suche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- A comparative study on direct production of ethyl levulinate from glucose in ethanol media catalysed by different acid catalysts
- Model-based sensitivity analysis of a fluidised-bed bioreactor for mercury uptake by immobilised Pseudomonas putida cells
- Variability of total and mobile element contents in ash derived from biomass combustion
- Pigmentary properties of rutile TiO2 modified with cerium, phosphorus, potassium, and aluminium
- Efficient synthesis of carbon nanotubes with improved surface area by low-temperature solvothermal route from dichlorobenzene
- Surface modification of quantum dots and magnetic nanoparticles with PEG-conjugated chitosan derivatives for biological applications
- Comparative study of particle size analysis of hydroxyapatite-based nanomaterials
- Synthesis of cinnamic acid-derived 4,5-dihydrooxazoles
- Thermodynamic properties of dimethyl phthalate + vinyl acetate, diethyl phthalate + vinyl acetate or bromocyclohexane, and dibutyl phthalate + vinyl acetate or 1,2-dichlorobenzene at T = 298.15–308.15 K
- Temperature-dependent volumetric and viscometric properties of amino acids in aqueous solutions of an antibiotic drug
- DFT study of free radical scavenging activity of erodiol
- QSAR study of amidino bis-benzimidazole derivatives as potent anti-malarial agents against Plasmodium falciparum
- Alternative two-step route to khellactone analogues using silica tungstic acid and sodium hydrogen phosphate
Artikel in diesem Heft
- A comparative study on direct production of ethyl levulinate from glucose in ethanol media catalysed by different acid catalysts
- Model-based sensitivity analysis of a fluidised-bed bioreactor for mercury uptake by immobilised Pseudomonas putida cells
- Variability of total and mobile element contents in ash derived from biomass combustion
- Pigmentary properties of rutile TiO2 modified with cerium, phosphorus, potassium, and aluminium
- Efficient synthesis of carbon nanotubes with improved surface area by low-temperature solvothermal route from dichlorobenzene
- Surface modification of quantum dots and magnetic nanoparticles with PEG-conjugated chitosan derivatives for biological applications
- Comparative study of particle size analysis of hydroxyapatite-based nanomaterials
- Synthesis of cinnamic acid-derived 4,5-dihydrooxazoles
- Thermodynamic properties of dimethyl phthalate + vinyl acetate, diethyl phthalate + vinyl acetate or bromocyclohexane, and dibutyl phthalate + vinyl acetate or 1,2-dichlorobenzene at T = 298.15–308.15 K
- Temperature-dependent volumetric and viscometric properties of amino acids in aqueous solutions of an antibiotic drug
- DFT study of free radical scavenging activity of erodiol
- QSAR study of amidino bis-benzimidazole derivatives as potent anti-malarial agents against Plasmodium falciparum
- Alternative two-step route to khellactone analogues using silica tungstic acid and sodium hydrogen phosphate