Startseite Efficient synthesis of carbon nanotubes with improved surface area by low-temperature solvothermal route from dichlorobenzene
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Efficient synthesis of carbon nanotubes with improved surface area by low-temperature solvothermal route from dichlorobenzene

  • Gantigaiah Krishnamurthy EMAIL logo und Sarika Agarwal
Veröffentlicht/Copyright: 28. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The synthesis of well-aggregated carbon nanotubes in the form of bundles was achieved by the catalytic reduction of 1,2-dichlorobenzene by a solvothermal approach. The use of 1,2-dichlorobenzene as a carbon source yielded a comparably good percentage of carbon nanotubes in the range of 60–70 %, at a low reaction temperature of 200°C. The products obtained were analysed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy techniques. The X-ray diffraction studies implied the presence of pure, crystalline, and well-ordered carbon nanotubes. The scanning electron and transmission electron microscopic images revealed the surface morphology, dimensions and the bundled form of the tubes. These micrographs showed the presence of multi-walled carbon nanotubes with an outer diameter of 30–55 nm, inner diameter of 15–30 nm, and lengths of several hundreds of nanometers. Brunauer-Emmett-Teller-based N2 gas adsorption studies were performed to determine the surface area and pore volume of the carbon nanotubes. These carbon nanotubes exhibit a better surface area of 385.30 m2 g−1. In addition, the effects of heating temperature, heating time, amount of catalyst and amount of carbon source on the product yield were investigated.

[1] Baughman, R. H., Cui, C. X., Zakhidov, A. A., Iqbal, Z., Barisci, J. N., Spinks, G. M., Wallace, G. G., Mazzoldi, A., De Rossi, D., Rinzler, A. G., Jaschinski, O., Roth, S., & Kertesz, M. (1999). Carbon nanotube actuators. Science, 284, 1340–1344. DOI: 10.1126/science.284.5418.1340. http://dx.doi.org/10.1126/science.284.5418.134010.1126/science.284.5418.1340Suche in Google Scholar

[2] Benito, A. M., Maniette, Y., Muñoz, E., & Martínez, M. T. (1998). Carbon nanotubes production by catalytic pyrolysis of benzene. Carbon, 36, 681–683. DOI: 10.1016/s0008-6223(98)00039-6. http://dx.doi.org/10.1016/S0008-6223(98)00039-610.1016/S0008-6223(98)00039-6Suche in Google Scholar

[3] Bera, D., Johnston, G., Heinrich, H., & Seal, S. (2006). A parametric study on the synthesis of carbon nanotubes through arc-discharge in water. Nanotechnology, 17, 1722–1730. DOI: 10.1088/0957-4484/17/6/030. http://dx.doi.org/10.1088/0957-4484/17/6/03010.1088/0957-4484/17/6/030Suche in Google Scholar

[4] Bethune, D. S., Kiang, C. H., Devries, M. S., Gorman, G., Savoy, R., Vazquez, J., & Beyers, R. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605–607. DOI: 10.1038/363605a0. http://dx.doi.org/10.1038/363605a010.1038/363605a0Suche in Google Scholar

[5] Branca, C., Frusteri, F., Magazu, V., & Mangione, A. (2004). Characterization of carbon nanotubes by TEM and infrared spectroscopy. The Journal of Physical Chemistry B, 108, 3469–3473. DOI: 10.1021/jp0372183. http://dx.doi.org/10.1021/jp037218310.1021/jp0372183Suche in Google Scholar

[6] Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319. DOI: 10.1021/ja01269a023. http://dx.doi.org/10.1021/ja01269a02310.1021/ja01269a023Suche in Google Scholar

[7] Cao, A. Y., Xu, C. L., Liang, J., Wu, D. H., & Wei, B. Q. (2001). X-ray diffraction characterization on the alignment degree of carbon nanotubes. Chemical Physics Letters, 344, 13–17. DOI: 10.1016/s0009-2614(01)00671-6. http://dx.doi.org/10.1016/S0009-2614(01)00671-610.1016/S0009-2614(01)00671-6Suche in Google Scholar

[8] Costa, S., Borowiak-Palen, E., Kruszyńska, M., Bachmatiuk, A., & Kalenczuk, R. J. (2008). Characterization of carbon nanotubes by Raman spectroscopy. Materials Science-Poland, 26, 433–441. Suche in Google Scholar

[9] Dai, H., Rinzler, A. G., Nikolaev, P., Thess, A., Colbert, D. T., & Smalley, R. E. (1996). Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chemical Physics Letters, 260, 471–475. DOI: 10.1016/0009-2614(96)00862-7. http://dx.doi.org/10.1016/0009-2614(96)00862-710.1016/0009-2614(96)00862-7Suche in Google Scholar

[10] Herreyre, S., & Gadelle, P. (1995). Effect of hydrogen on the morphology of carbon deposited from the catalytic disproportionation of CO. Carbon, 33, 234–237. DOI: 10.1016/0008-6223(95)92803-m. http://dx.doi.org/10.1016/0008-6223(95)92803-M10.1016/0008-6223(95)92803-MSuche in Google Scholar

[11] Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58. DOI: 10.1038/354056a0. http://dx.doi.org/10.1038/354056a010.1038/354056a0Suche in Google Scholar

[12] Jian, S. R., Chen, Y. T., Wang, C. F., Wen, H. C., Chiu, W. M., Yang, C. S. (2008). The influences of H2 plasma pretreatment on the growth of vertically aligned carbon nanotubes by microwave plasma chemical vapor deposition. Nanoscale Research Letters, 3, 230–235. DOI: 10.1007/s11671-008-9141-5. http://dx.doi.org/10.1007/s11671-008-9141-510.1007/s11671-008-9141-5Suche in Google Scholar

[13] Jiang, Y., Wu, Y., Zhang, S. Y., Xu, C. Y., Yu, W. C., Xie, Y., & Qian, Y. T. (2000). A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate tem perature. Journal of the American Chemical Society, 122, 12383–12384. DOI: 10.1021/ja002387b. http://dx.doi.org/10.1021/ja002387b10.1021/ja002387bSuche in Google Scholar

[14] Karmakar, S., Sharma, S. M., & Sood, A. K. (2005). Studies on high pressure behavior of carbon nanotubes: X-ray diffraction measurements using synchrotron radiation. Nuclear Instruments and Methods in Physics Research Section B, 238, 281–284. DOI: 10.1016/j.nimb.2005.06.064. http://dx.doi.org/10.1016/j.nimb.2005.06.06410.1016/j.nimb.2005.06.064Suche in Google Scholar

[15] Kim, P., & Lieber, C. M. (1999). Nanotube nanotweezers. Science, 286, 2148–2150. DOI: 10.1126/science.286.5447.2148. http://dx.doi.org/10.1126/science.286.5447.214810.1126/science.286.5447.2148Suche in Google Scholar PubMed

[16] Kim, H. H., & Kim, H. J. (2007). New DC arc discharge synthesis method for carbon nanotubes using xylene ferrocene as floating catalyst. Japanese Journal of Applied Physics, 46, 1818–1820. DOI: 10.1143/jjap.46.1818. http://dx.doi.org/10.1143/JJAP.46.181810.1143/JJAP.46.1818Suche in Google Scholar

[17] Kong, J., Franklin, N. R., Zhou, C. W., Chapline, M. G., Peng, S., Cho, K. J., & Dai, H. J. (2000). Nanotube molecular wires as chemical sensors. Science, 287, 622–625. DOI: 10.1126/science.287.5453.622. http://dx.doi.org/10.1126/science.287.5453.62210.1126/science.287.5453.622Suche in Google Scholar PubMed

[18] Liu, C., Fan, Y. Y., Liu, M., Cong, H. T., Cheng, H. M., & Dresselhaus, M. S. (1999). Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 286, 1127–1129. DOI: 10.1126/science.286.5442.1127. http://dx.doi.org/10.1126/science.286.5442.112710.1126/science.286.5442.1127Suche in Google Scholar PubMed

[19] Liu, J. W., Shao, M. W., Chen, X. Y., Yu, W. C., Liu, X. M., & Qian, Y. T. (2003). Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process. Journal of the American Chemical Society, 125, 8088–8089. DOI: 10.1021/ja035763b. http://dx.doi.org/10.1021/ja035763b10.1021/ja035763bSuche in Google Scholar PubMed

[20] Mahanandia, P., Vishwakarma, P. N., Nanda, K. K., Prasad, V., Barai, K., Mondal, A. K., Sarangi, S., Dey, G. K., Subramanyam, S. V. (2008). Synthesis of multi-wall carbon nanotubes by simple pyrolysis. Solid State Communications, 145, 143–148. DOI: 10.1016/j.ssc.2007.10.020. http://dx.doi.org/10.1016/j.ssc.2007.10.02010.1016/j.ssc.2007.10.020Suche in Google Scholar

[21] Manafi, S. A., Amin, M. H., Rahimipour, M. R., Salahi, E., & Kazemzadeh, A. (2009). High-yield synthesis of multiwalled carbon nanotube by mechanothermal method. Nanoscale Research Letters, 4, 296–302. DOI: 10.1007/s11671-008-9240-3. http://dx.doi.org/10.1007/s11671-008-9240-310.1007/s11671-008-9240-3Suche in Google Scholar PubMed PubMed Central

[22] Rodriguez, N. M. (1993). A review of catalytically grown carbon nanofibers. Journal of Materials Research, 8, 3233–3250. DOI: 10.1557/jmr.1993.3233. http://dx.doi.org/10.1557/JMR.1993.323310.1557/JMR.1993.3233Suche in Google Scholar

[23] Scott, C. D., Arepalli, S., Nikolaev, P., & Smalley, R. E. (2001). Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Applied Physics A, 72, 573–580. DOI: 10.1007/s003390100761. http://dx.doi.org/10.1007/s00339010076110.1007/s003390100761Suche in Google Scholar

[24] Shim, M., Javey, A., Kam, N. W. S., & Dai, H. (2001). Polymer functionalization for air-stable N-type carbon nanotube fieldeffect transistors. Journal of the American Chemical Society, 123, 11512–11513. DOI: 10.1021/ja0169670. http://dx.doi.org/10.1021/ja016967010.1021/ja0169670Suche in Google Scholar PubMed

[25] Tsang, S. C., Harris, P. J. F., & Green, M. L. H. (1993). Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature, 362, 520–522. DOI: 10.1038/362520a0. http://dx.doi.org/10.1038/362520a010.1038/362520a0Suche in Google Scholar

[26] Wang, X. J., Lu, J., Xie, Y., Du, G., Guo, Q. X., & Zhang, S. Y. (2002). A novel route to multiwalled carbon nanotubes and carbon nanorods at low temperature. Journal of Physical Chemistry B, 106, 933–937. DOI: 10.1021/jp0130719. http://dx.doi.org/10.1021/jp013071910.1021/jp0130719Suche in Google Scholar

[27] Wang, W. Z., Kunwar, S., Huang, J. Y., Wang, D. Z., & Ren, Z. F. (2005). Low temperature solvothermal synthesis of multiwall carbon nanotubes. Nanotechnology, 16, 21–23. DOI: 10.1088/0957-4484/16/1/005. http://dx.doi.org/10.1088/0957-4484/16/1/00510.1088/0957-4484/16/1/005Suche in Google Scholar

[28] Wu, H. C., Chang, X. L, Liu, L., Zhao, F., & Zhao, Y. L. (2010). Chemistry of carbon nanotubes in biomedical applications. Journal of Materials Chemistry, 20, 1036–1052. DOI: 10.1039/b911099m. http://dx.doi.org/10.1039/b911099m10.1039/B911099MSuche in Google Scholar

[29] Yuan, D. S., Liu, Y. L., Xiao, Y., & Chen, L. Q. (2008). Preparation and characterization of Z-shaped carbon nanotubes via decomposing magnesium acetate. Materials Chemistry and Physics, 112, 27–30. DOI: 10.1016/j.matchemphys.2008.04.040. http://dx.doi.org/10.1016/j.matchemphys.2008.04.04010.1016/j.matchemphys.2008.04.040Suche in Google Scholar

[30] Zdrojek, M., Gebicki, W., Jastrzebski, C., Melin, T., & Huczko, A. (2004). Studies of multiwall carbon nanotubes using Raman spectroscopy and atomic force microscopy. Solide State Phenomena, 99, 265–268. DOI: 10.4028/www.scientific.net/ssp.99-100.265. http://dx.doi.org/10.4028/www.scientific.net/SSP.99-100.26510.4028/www.scientific.net/SSP.99-100.265Suche in Google Scholar

[31] Zubizarreta, L., Arenillas, A., & Pis, J. J. (2009). Carbon materials for H2 storage. International Journal of Hydrogen Energy, 34, 4575–4581. DOI: 10.1016/j.ijhydene.2008.07.112. http://dx.doi.org/10.1016/j.ijhydene.2008.07.11210.1016/j.ijhydene.2008.07.112Suche in Google Scholar

Published Online: 2013-6-28
Published in Print: 2013-11-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0397-6/pdf
Button zum nach oben scrollen