Abstract
The reduction of pyruvic acid in near-critical water has successfully been conducted under conditions of various temperatures, pressures, reaction time and the presence of formic acid as the reducing agent. In this work, additives (K2CO3, KHCO3, and sodium acetate) used in the reduction of pyruvic acid were also investigated. The results showed that by adding K2CO3 (25 mole %) a markedly higher lactic acid yield (70.7 %) was obtained than without additives (31.3 %) at 573.15 K, pressure of 8.59 MPa, 60 min, and in the presence of 2 mol L−1 formic acid. As a base catalyst, K2CO3 definitely accelerated the reduction of pyruvic acid. The reaction rate constants, average apparent activation energy and pre-exponential factor were evaluated in accordance with the Arrhenius equation. The reaction mechanism of the reduction was proposed on the basis of the experimental results.
[1] Adsul, M. G., Varma, A. J., & Gokhale, D. V. (2007). Lactic acid production from waste sugarcane bagasse derived cellulose. Green Chemistry, 9, 58–62. DOI: 10.1039/b605839f. http://dx.doi.org/10.1039/b605839f10.1039/B605839FSuche in Google Scholar
[2] Fujii, A., Hashiguchi, S., Uematsu, N., Ikariya, T., & Noyori, R. (1996). Ruthenium(II)-catalyzed asymmetric transfer hydrogenation of ketones using a formic acid-triethylamine mixture. Journal of the American Chemical Society, 118, 2521–2522. DOI: 10.1021/ja954126l. http://dx.doi.org/10.1021/ja954126l10.1021/ja954126lSuche in Google Scholar
[3] Ashby, E. E., Coleman, D. T., III, & Gamasa, M. P. (1983). Evidence supporting a single electron transfer pathway in the Cannizzaro reaction. Tetrahedron Letters, 24, 851–854. DOI: 10.1016/s0040-4039(00)81546-4. http://dx.doi.org/10.1016/S0040-4039(00)81546-410.1016/S0040-4039(00)81546-4Suche in Google Scholar
[4] Ashby, E. C., Coleman, D., & Gamasa, M. (1987). Single electron transfer in the Cannizzaro reaction. The Journal of Organic Chemistry, 52, 4079–4085. DOI: 10.1021/jo00227a025. http://dx.doi.org/10.1021/jo00227a02510.1021/jo00227a025Suche in Google Scholar
[5] Bröll, D., Kaul, C., Krämer, A., Krammer, P., Richter, T., Jung, M., Vogel, H., & Zehner, P. (1999). Chemistry in supercritical water. Angewandte Chemie International Edition, 38, 2998–3014. DOI: 10.1002/(SICI)1521-3773(19991018)38:20〈2998::AID-ANIE2998〉3.0.CO;2-L. http://dx.doi.org/10.1002/(SICI)1521-3773(19991018)38:20<2998::AID-ANIE2998>3.0.CO;2-L10.1002/(SICI)1521-3773(19991018)38:20<2998::AID-ANIE2998>3.0.CO;2-LSuche in Google Scholar
[6] Chang, Y. J., Wang, Z. Z., Luo, L. G., & Dai, L. Y. (2012). Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water. Chemical Papers, 66, 33–38. DOI: 10.2478/s11696-011-0093-3. http://dx.doi.org/10.2478/s11696-011-0093-310.2478/s11696-011-0093-3Suche in Google Scholar
[7] Chung, S. K. (1982). Mechanism of the Cannizzaro reaction: possible involvement of radical intermediates. Journal of the Chemical Society, Chemical Communications, 1982, 480–481. DOI:10.1039/c39820000480. http://dx.doi.org/10.1039/c3982000048010.1039/c39820000480Suche in Google Scholar
[8] Duan, P. G., Li, S., Wang, Z. Z., & Dai, L. Y. (2007a). Hydrolysis kinetics and mechanism of adipamide in high temperature water. Chemical Engineering Research and Design, 88, 1067–1072. DOI:10.1016/j.cherd.2010.01.031. http://dx.doi.org/10.1016/j.cherd.2010.01.03110.1016/j.cherd.2010.01.031Suche in Google Scholar
[9] Duan, P. G., Wang, X., & Dai, L. Y. (2007b). Noncatalytic hydrolysis of iminodiacetonitrile in near-critical water-A green process for the manufacture of iminodiacetic acid. Chemical Engineering & Technology, 30, 265–269. DOI:10.1002/ceat.200600298. http://dx.doi.org/10.1002/ceat.20060029810.1002/ceat.200600298Suche in Google Scholar
[10] Geissman, T. A. (1944). The Cannizzaro reaction. In Organic reactions (Vol. II, Chapter 3, pp. 94–113). New York, NY, USA: Wiley. DOI: 10.1002/0471264180.or002.03. 10.1002/0471264180.or002.03Suche in Google Scholar
[11] Ikushima, Y., Hatakeda, K., Sato, O., Yokoyama, T., & Arai, M. (2001). Structure and base catalysis of supercritical water in the noncatalytic benzaldehyde disproportionation using water at high temperatures and pressures. Angewandte Chemie International Edition, 40, 210–213. DOI: 10.1002/1521-3773(20010105)40:1〈210::AID-ANIE210〉3.0.CO;2-7. http://dx.doi.org/10.1002/1521-3773(20010105)40:1<210::AID-ANIE210>3.0.CO;2-710.1002/1521-3773(20010105)40:1<210::AID-ANIE210>3.0.CO;2-7Suche in Google Scholar
[12] Inkinen, S., Hakkarainen, M., Albertsson, A. C., & Södergård, A. (2011). From lactic acid to poly(lactic acid) (PLA): Characterization and analysis of PLA and its precursors. Biomacromolecules, 12, 523–532. DOI: 10.1021/bm101302t. http://dx.doi.org/10.1021/bm101302t10.1021/bm101302tSuche in Google Scholar
[13] Joo, M. J., Merkel, C., Auras, R., & Almenar, E. (2012). Development and characterization of antimicrobial poly (l-lactic acid) containing trans-2-hexenal trapped in cyclodextrins. International Journal of Food Microbiology, 153, 297–305. DOI:10.1016/j.ijfoodmicro.2011.11.015. http://dx.doi.org/10.1016/j.ijfoodmicro.2011.11.01510.1016/j.ijfoodmicro.2011.11.015Suche in Google Scholar
[14] Kabyemela, B. M., Adschiri, T., Malaluan, R. M., & Arai, K. (1997). Kinetics of glucose epimerization and decomposition in subcritical and supercritical water. Industrial & Engineering Chemistry Research, 36, 1552–1558. DOI: 10.1021/ie960250h. http://dx.doi.org/10.1021/ie960250h10.1021/ie960250hSuche in Google Scholar
[15] Kruse, A., & Dinjus, E. (2007). Hot compressed water as reaction medium and reactant: Properties and synthesis reactions. The Journal of Supercritical Fluids, 39, 362–380. DOI:10.1016/j.supflu.2006.03.016. http://dx.doi.org/10.1016/j.supflu.2006.03.01610.1016/j.supflu.2006.03.016Suche in Google Scholar
[16] Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., & Maciel Filho, R. (2012). Poly-lactic acid synthesis for application in biomedical devices — A review. Biotechnology Advances, 30, 321–328. DOI:10.1016/j.biotechadv.2011.06.019. http://dx.doi.org/10.1016/j.biotechadv.2011.06.01910.1016/j.biotechadv.2011.06.019Suche in Google Scholar
[17] Li, L. X., Portela, J. R., Vallejo, D., & Gloyna, E. F. (1999). Oxidation and hydrolysis of lactic acid in near-critical water. Industrial & Engineering Chemistry Research, 38, 2599–2606. DOI: 10.1021/ie980520r. http://dx.doi.org/10.1021/ie980520r10.1021/ie980520rSuche in Google Scholar
[18] Matharu, D. S., Morris, D. J., Clarkson, G. J., & Wills, M. (2006). An outstanding catalyst for asymmetric transfer hydrogenation in aqueous solution and formic acid/triethylamine. Chemical Communications, 2006, 3232–3234. DOI: 10.1039/b606288a. http://dx.doi.org/10.1039/b606288a10.1039/b606288aSuche in Google Scholar
[19] Naskar, S., & Bhattacharjee, M. (2007). Selective N-monoalkylation of anilines catalyzed by a cationic ruthenium(II) compound. Tetrahedron Letters, 48, 3367–3370. DOI: 10.1016/j.tetlet.2007.03.075. http://dx.doi.org/10.1016/j.tetlet.2007.03.07510.1016/j.tetlet.2007.03.075Suche in Google Scholar
[20] Nolen, S. A., Liotta, C. L., Eckert, C. A., & Gläser, R. (2003). The catalytic opportunities of near-critical water: a benign medium for conventionally acid and base catalyzed condensations for organic synthesis. Green Chemistry, 2003, 663–669. DOI: 10.1039/b308499j. http://dx.doi.org/10.1039/b308499j10.1039/B308499JSuche in Google Scholar
[21] Panwar, N. L., Kothari, R., & Tyagi, V. V. (2012). Thermo chemical conversion of biomass — Eco friendly energy routes. Renewable & Sustainable Energy Reviews, 16, 1801–1816. DOI:10.1016/j.rser.2012.01.024. http://dx.doi.org/10.1016/j.rser.2012.01.02410.1016/j.rser.2012.01.024Suche in Google Scholar
[22] Sato, N., Quitain, A. T., Kang, K., Daimon, H., & Fujie, K. (2004). Reaction kinetics of amino acid decomposition in high-temperature and high-pressure water. Industrial & Engineering Chemistry Research, 43, 3217–3222. DOI: 10.1021/ie020733n. http://dx.doi.org/10.1021/ie020733n10.1021/ie020733nSuche in Google Scholar
[23] Savage, P. E. (1999). Organic chemical reactions in supercritical water. Chemical Reviews, 99, 603–621. DOI: 10.1021/cr9700989. http://dx.doi.org/10.1021/cr970098910.1021/cr9700989Suche in Google Scholar
[24] Siskin, M., & Katritzky, A. R. (2001). Reactivity of organic compounds in superheated water: General background. Chemical Reviews, 101, 825–836. DOI: 10.1021/cr000088z. http://dx.doi.org/10.1021/cr000088z10.1021/cr000088zSuche in Google Scholar
[25] Socha, R. F., & Weiss, A. H., & Sakharov, M. M. (1981). Homogeneously catalyzed condensation of formaldehyde to carbohydrates: VII. An overall formose reaction model. Journal of Catalysis, 67, 207–217. DOI: 10.1016/0021-9517(81)90272-4. 10.1016/0021-9517(81)90272-4Suche in Google Scholar
[26] Swain, C. G., Powell, A. L., Sheppard, W. A., & Morgan, C. R. (1979). Mechanism of the Cannizzaro reaction. Journal of the American Chemical Society, 101, 3576–3583. DOI: 10.1021/ja00507a023. http://dx.doi.org/10.1021/ja00507a02310.1021/ja00507a023Suche in Google Scholar
[27] Wang, C. W., Zhou, F. L., Yang, Z., Wang, W. G., Yu, F. Q., Wu, Y. X., & Chi, R. A. (2012). Hydrolysis of cellulose into reducing sugar via hot-compressed ethanol/water mixture. Biomass & Bioenergy, 42, 143–150. DOI: 10.1016/j.biombioe.2012.03.004. http://dx.doi.org/10.1016/j.biombioe.2012.03.00410.1016/j.biombioe.2012.03.004Suche in Google Scholar
[28] Watanabe, M., Sato, T., Inomata, H., Smith, R. L., Jr., Arai, K., Kruse, A., & Dinjus, E. (2004). Chemical reactions of C1 compounds in near-critical and supercritical water. Chemical Reviews, 104, 5803–5821. DOI: 10.1021/cr020415y. http://dx.doi.org/10.1021/cr020415y10.1021/cr020415ySuche in Google Scholar PubMed
[29] Wee, Y. J., Yun, J. S., Kim, D., & Ryu, H.W. (2006). Batch and repeated batch production of L(+)-lactic acid by Enterococcus faecalis RKY1 using wood hydrolyzate and corn steep liquor. Journal of Industrial Microbiology & Biotechnology, 33, 431–435. DOI: 10.1007/s10295-006-0084-5. http://dx.doi.org/10.1007/s10295-006-0084-510.1007/s10295-006-0084-5Suche in Google Scholar PubMed
[30] Yagasaki, T., Saito, S., & Ohmine, I. (2002). A theoretical study on decomposition of formic acid in sub- and supercritical water. The Journal of Chemical Physics, 117, 7631–7639. DOI: 10.1063/1.1509057. http://dx.doi.org/10.1063/1.150905710.1063/1.1509057Suche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Application of umbelliferone molecularly imprinted polymer in analysis of plant samples
- Determination of antioxidant activity using oxidative damage to plasmid DNA — pursuit of solvent optimization
- Nanosized sulfated zirconia as solid acid catalyst for the synthesis of 2-substituted benzimidazoles
- Removal of heavy metal ions from aqueous solutions using low-cost sorbents obtained from ash
- Base-catalysed reduction of pyruvic acid in near-critical water
- Solubility and micronisation of phenacetin in supercritical carbon dioxide
- Synthesis of nanostructured perovskite powders via simple carbonate co-precipitation
- Three-component one-pot reaction for the synthesis of β-amide ketones
- Spectral analysis of naringenin deprotonation in aqueous ethanol solutions
- Provenance study of volcanic glass using 266–1064 nm orthogonal double pulse laser induced breakdown spectroscopy
- A new, fully validated and interpreted quantitative structure-activity relationship model of p-aminosalicylic acid derivatives as neuraminidase inhibitors
- Interaction of oligonucleotides with benzo[c]phenanthridine alkaloid sanguilutine
Artikel in diesem Heft
- Application of umbelliferone molecularly imprinted polymer in analysis of plant samples
- Determination of antioxidant activity using oxidative damage to plasmid DNA — pursuit of solvent optimization
- Nanosized sulfated zirconia as solid acid catalyst for the synthesis of 2-substituted benzimidazoles
- Removal of heavy metal ions from aqueous solutions using low-cost sorbents obtained from ash
- Base-catalysed reduction of pyruvic acid in near-critical water
- Solubility and micronisation of phenacetin in supercritical carbon dioxide
- Synthesis of nanostructured perovskite powders via simple carbonate co-precipitation
- Three-component one-pot reaction for the synthesis of β-amide ketones
- Spectral analysis of naringenin deprotonation in aqueous ethanol solutions
- Provenance study of volcanic glass using 266–1064 nm orthogonal double pulse laser induced breakdown spectroscopy
- A new, fully validated and interpreted quantitative structure-activity relationship model of p-aminosalicylic acid derivatives as neuraminidase inhibitors
- Interaction of oligonucleotides with benzo[c]phenanthridine alkaloid sanguilutine