Abstract
The condensation reaction of o-phenylenediamine and arylaldehydes was investigated in the presence of nanosized sulfated zirconia (SO42−-ZrO2) as the solid acid catalyst. Nanosized SO42−-ZrO2 was prepared and characterized by the XRD, FT-IR, and SEM techniques. The results confirm good stabilization of the tetragonal phase of zirconia in the presence of sulfate. Reusability experiments showed partial deactivation of the catalyst after each run; good reusability can be achieved after calcinations of the recovered catalyst before its reuse.
[1] Abdollahi-Alibeik, M., Mohammadpoor-Baltork, I., Zaghaghi, Z., & Yousefi, B. H. (2008). Efficient synthesis of 1,5-benzodiazepines catalyzed by silica supported 12-tungstophosphoric acid. Catalysis Communications, 9, 2496–2502. DOI:10.1016/j.catcom.2008.07.004. http://dx.doi.org/10.1016/j.catcom.2008.07.00410.1016/j.catcom.2008.07.004Suche in Google Scholar
[2] Abdollahi-Alibeik, M., & Zaghaghi, Z. (2009). 1,3-Dibromo-5,5-dimethylhydantoin as a useful reagent for efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions. Chemical Papers, 63, 97–101. DOI: 10.2478/s11696-008-0084-1. http://dx.doi.org/10.2478/s11696-008-0084-110.2478/s11696-008-0084-1Suche in Google Scholar
[3] Abdollahi-Alibeik, M., & Moosavifard, M. (2010). FeCl3-doped polyaniline nanoparticles as reusable heterogeneous catalyst for the synthesis of 2-substituted benzimidazoles. Synthetic Communications, 40, 2686–2695. DOI: 10.1080/00397910903318658. http://dx.doi.org/10.1080/0039791090331865810.1080/00397910903318658Suche in Google Scholar
[4] Abdollahi-Alibeik, M., & Pouriayevali, M. (2011). 12-Tungstophosphoric acid supported on nano sized MCM-41 as an efficient and reusable solid acid catalyst for the three-component imino Diels-Alder reaction. Reaction Kinetics, Mechanisms and Catalysis, 104, 235–248. DOI: 10.1007/s11144-011-0345-9. http://dx.doi.org/10.1007/s11144-011-0345-910.1007/s11144-011-0345-9Suche in Google Scholar
[5] Abdollahi-Alibeik, M., & Heidari-Torkabad, E. (2012). H3PW12 O40/MCM-41 nanoparticles as efficient and reusable solid acid catalyst for the synthesis of quinoxalines. Comptes Rendus Chimie, 15, 517–523. DOI:10.1016/j.crci.2012.04.005. http://dx.doi.org/10.1016/j.crci.2012.04.00510.1016/j.crci.2012.04.005Suche in Google Scholar
[6] Abdollahi-Alibeik, M., & Pouriayevali, M. (2012). Nanosized MCM-41 supported protic ionic liquid as an efficient novel catalytic system for Friedlander synthesis of quinolines. Catalysis Communications, 22, 13–18. DOI:10.1016/j.catcom.2012.02.004. http://dx.doi.org/10.1016/j.catcom.2012.02.00410.1016/j.catcom.2012.02.004Suche in Google Scholar
[7] Adam, F., Batagarawa, M., Hello, K., & Al-Juaid, S. (2012). One-step synthesis of solid sulfonic acid catalyst and its application in the acetalization of glycerol: crystal structure of cis-5-hydroxy-2-phenyl-1,3-dioxane trimer. Chemical Papers, 66, 1048–1058. DOI: 10.2478/s11696-012-0203-x. http://dx.doi.org/10.2478/s11696-012-0203-x10.2478/s11696-012-0203-xSuche in Google Scholar
[8] Chen, G. F., & Dong, X. Y. (2012). Facile and selective synthesis of 2-substituted benzimidazoles catalyzed by FeCl3/Al2O3. E-Journal of Chemistry, 9, 289–293. DOI:10.1155/2012/197174. http://dx.doi.org/10.1155/2012/19717410.1155/2012/197174Suche in Google Scholar
[9] Denny, W. A., Rewcastle, G. W., & Baguley, B. C. (1990). Potential antitumor agents. 59. Structure-activity relationships for 2-phenylbenzimidazole-4-carboxamides, a new class of minimal DNA-intercalating agents which may not act via topoisomerase II. Journal of Medicinal Chemistry, 33, 814–819. DOI: 10.1021/jm00164a054. http://dx.doi.org/10.1021/jm00164a05410.1021/jm00164a054Suche in Google Scholar PubMed
[10] Dhakshinamoorthy, A., Kanagaraj, K., & Pitchumani, K. (2011). Zn2+-K10-clay (clayzic) as an efficient water-tolerant, solid acid catalyst for the synthesis of benzimidazoles and quinoxalines at room temperature. Tetrahedron Letters, 52, 69–73. DOI:10.1016/j.tetlet.2010.10.146. http://dx.doi.org/10.1016/j.tetlet.2010.10.14610.1016/j.tetlet.2010.10.146Suche in Google Scholar
[11] Du, L. H., & Wang, Y. G. (2007). A rapid and efficient synthesis of benzimidazoles using hypervalent iodine as oxidant. Synthesis, 2007, 675–678. DOI:10.1055/s-2007-965922. http://dx.doi.org/10.1055/s-2007-96592210.1055/s-2007-965922Suche in Google Scholar
[12] Dudd, L. M., Venardou, E., Garcia-Verdugo, E., Licence, P., Blake, A. J., Wilson, C., & Poliakoff, M. (2003). Synthesis of benzimidazoles in high-temperature water. Green Chemistry, 5, 187–192. DOI: 10.1039/b212394k. http://dx.doi.org/10.1039/b212394k10.1039/b212394kSuche in Google Scholar
[13] Fekner, T., Gallucci, J., & Chan, M. K. (2004). Ruffling-induced chirality: Synthesis, metalation, and optical resolution of highly nonplanar, cyclic, benzimidazole-based ligands. Journal of the American Chemical Society, 126, 223–236. DOI: 10.1021/ja030196d. http://dx.doi.org/10.1021/ja030196d10.1021/ja030196dSuche in Google Scholar
[14] Fonseca, T., Gigante, B., & Gilchrist, T. L. (2001). A short synthesis of phenanthro[2,3-d]imidazoles from dehydroabietic acid. Application of the methodology as a convenient route to benzimidazoles. Tetrahedron, 57, 1793–1799. DOI: 10.1016/s0040-4020(00)01158-3. 10.1016/S0040-4020(00)01158-3Suche in Google Scholar
[15] Hasegawa, E., Yoneoka, A., Suzuki, K., Kato, T., Kitazume, T., & Yanagi, K. (1999). Reductive transformation of α, β-epoxy ketones and other compounds promoted through photoinduced electron transfer processes with 1,3-dimethyl-2-phenylbenzimidazoline (DMPBI). Tetrahedron, 55, 12957–12968. DOI: 10.1016/s0040-4020(99)00804-2. http://dx.doi.org/10.1016/S0040-4020(99)00804-210.1016/S0040-4020(99)00804-2Suche in Google Scholar
[16] Hein, D. W., Alheim, R. J., & Leavitt, J. J. (1957). The use of polyphosphoric acid in the synthesis of 2-aryl- and 2-alkyl-substituted benzimidazoles, benzoxazoles and benzothiazoles. Journal of the American Chemical Society, 79, 427–429. DOI: 10.1021/ja01559a053. http://dx.doi.org/10.1021/ja01559a05310.1021/ja01559a053Suche in Google Scholar
[17] Karami, B., Khodabakhshi, S., & Haghighijou, Z. (2012). Tungstate sulfuric acid: preparation, characterization, and application in catalytic synthesis of novel benzimidazoles. Chemical Papers, 66, 684–690. DOI: 10.2478/s11696-012-0152-4. http://dx.doi.org/10.2478/s11696-012-0152-410.2478/s11696-012-0152-4Suche in Google Scholar
[18] Katritzky, A. R., Aslan, D. C., & Oniciu, D. C. (1998). Stereoselective synthesis of 2-(α-hydroxyalkyl)benzimidazoles. Tetrahedron: Asymmetry, 9, 2245–2251. DOI: 10.1016/s0957-4166(98)00202-x. http://dx.doi.org/10.1016/S0957-4166(98)00202-X10.1016/S0957-4166(98)00202-XSuche in Google Scholar
[19] Lopez, S. E., Restrepo, J., Perez, B., Ortiz, S., & Salazar, J. (2009). One pot microwave promoted synthesis of 2-aryl-1H-benzimidazoles using sodium hydrogen sulfite. Bulletin of the Korean Chemical Society, 30, 1628–1630. DOI:10.5012/bkcs.2009.30.7.1628. http://dx.doi.org/10.5012/bkcs.2009.30.7.162810.5012/bkcs.2009.30.7.1628Suche in Google Scholar
[20] Mohammadpoor-Baltork, I., Khosropour, A. R., & Hojati, S. F. (2007). ZrOCl2·8H2O as an efficient, environmentally friendly and reusable catalyst for synthesis of benzoxazoles, benzothiazoles, benzimidazoles and oxazolo[4,5-b]pyridines under solvent-free conditions. Catalysis Communications, 8, 1865–1870. DOI:10.1016/j.catcom.2007.02.020. http://dx.doi.org/10.1016/j.catcom.2007.02.02010.1016/j.catcom.2007.02.020Suche in Google Scholar
[21] Nadaf, R. N., Siddiqui, S. A., Daniel, T., Lahoti, R. J., & Srinivasan, K. V. (2004). Room temperature ionic liquid promoted regioselective synthesis of 2-aryl benzimidazoles, benzoxazoles and benzthiazoles under ambient conditions. Journal of Molecular Catalysis A: Chemical, 214, 155–160. DOI:10.1016/j.molcata.2003.10.064. http://dx.doi.org/10.1016/j.molcata.2003.10.06410.1016/j.molcata.2003.10.064Suche in Google Scholar
[22] Negrón, G. E., Palacios, L. N., Angeles, D., Lomas, L., & Gaviñno, R. (2005). A mild and efficient method for the chemoselective synthesis of acylals from aromatic aldehydes and their deprotections catalyzed by sulfated zirconia. Journal of the Brazilian Chemical Society, 16, 490–494. DOI:10.1590/s0103-50532005000300025. http://dx.doi.org/10.1590/S0103-5053200500030002510.1590/S0103-50532005000300025Suche in Google Scholar
[23] Ponnala, S., & Prasad Sahu, D. (2006). Iodine-mediated synthesis of 2-arylbenzoxazoles, 2-arylbenzimidazoles, and 1,3,5-trisubstituted pyrazoles. Synthetic Communications, 36, 2189–2194. DOI: 10.1080/00397910600638879. http://dx.doi.org/10.1080/0039791060063887910.1080/00397910600638879Suche in Google Scholar
[24] Reddy, B. M., & Patil, M. K. (2009). Organic syntheses and transformations catalyzed by sulfated zirconia. Chemical Reviews, 109, 2185–2208. DOI: 10.1021/cr900008m. http://dx.doi.org/10.1021/cr900008m10.1021/cr900008mSuche in Google Scholar
[25] Rekha, M., Hamza, A., Venugopal, B. R., & Nagaraju, N. (2012). Synthesis of 2-substituted benzimidazoles and 1,5-disubstituted benzodiazepines on alumina and zirconia catalysts. Chinese Journal of Catalysis, 33, 439–446. DOI:10.1016/s1872-2067(11)60338-0. http://dx.doi.org/10.1016/S1872-2067(11)60338-010.1016/S1872-2067(11)60338-0Suche in Google Scholar
[26] Song, X. Q., Vig, B. S., Lorenzi, P. L., Drach, J. C., Townsend, L. B., & Amidon, G. L. (2005). Amino acid ester prodrugs of the antiviral agent 2-bromo-5,6-dichloro-1-(β-d-ribofuranosyl)benzimidazole as potential substrates of hPEPT1 transporter. Journal of Medicinal Chemistry, 48, 1274–1277. DOI: 10.1021/jm049450i. http://dx.doi.org/10.1021/jm049450i10.1021/jm049450iSuche in Google Scholar
[27] Srinivas, U., Srinivas, Ch., Narender, P., Rao, V. J., & Palaniappan, S. (2007). Polyaniline-sulfate salt as an efficient and reusable catalyst for the synthesis of 1,5-benzodiazepines and 2-phenyl benzimidazoles. Catalysis Communications, 8, 107–110. DOI:10.1016/j.catcom.2006.05.022. http://dx.doi.org/10.1016/j.catcom.2006.05.02210.1016/j.catcom.2006.05.022Suche in Google Scholar
[28] Tyagi, B., Mishra, M. K., & Jasra, R. V. (2007). Synthesis of 7-substituted 4-methyl coumarins by Pechmann reaction using nano-crystalline sulfated-zirconia. Journal of Molecular Catalysis A: Chemical, 276, 47–56. DOI:10.1016/j.molcata.2007.06.003. http://dx.doi.org/10.1016/j.molcata.2007.06.00310.1016/j.molcata.2007.06.003Suche in Google Scholar
[29] Tyagi, B., Mishra, M. K., & Jasra, R. V. (2009). Solvent free synthesis of 7-isopropyl-1,1-dimethyltetralin by the rearrangement of longifolene using nano-crystalline sulfated zirconia catalyst. Journal of Molecular Catalysis A: Chemical, 301, 67–78. DOI:10.1016/j.molcata.2008.11.011. http://dx.doi.org/10.1016/j.molcata.2008.11.01110.1016/j.molcata.2008.11.011Suche in Google Scholar
[30] Valdez, J., Cedillo, R., Hernández-Campos, A., Yépez, L., Hernández-Luis, F., Navarrete-Vázquez, G., Tapia, A., Cortés, R., Hernándey, M., & Castillo, R. (2002). Synthesis and antiparasitic activity of 1H-benzimidazole derivatives. Bioorganic & Medicinal Chemistry Letters, 12, 2221–2224. DOI: 10.1016/s0960-894x(02)00346-3. http://dx.doi.org/10.1016/S0960-894X(02)00346-310.1016/S0960-894X(02)00346-3Suche in Google Scholar
[31] Varala, R., Nasreen, A., Enugala, R., & Adapa, S. R. (2007). l-Proline catalyzed selective synthesis of 2-aryl-1-arylmethyl-1H-benzimidazoles. Tetrahedron Letters, 48, 69–72. DOI:10.1016/j.tetlet.2006.11.010. http://dx.doi.org/10.1016/j.tetlet.2006.11.01010.1016/j.tetlet.2006.11.010Suche in Google Scholar
[32] Wolfson, A., Madhusudhan, R., Shapira-Tchelet, A., & Landau, M. (2009). Effects of acyl donor type, catalyst type, and reaction conditions on the activity and selectivity of Friedel-Crafts acylation. Chemical Papers, 63, 291–297. DOI: 10.2478/s11696-009-0018-6. http://dx.doi.org/10.2478/s11696-009-0018-610.2478/s11696-009-0018-6Suche in Google Scholar
[33] Yamaguchi, T. (1994). Application of ZrO2 as a catalyst and a catalyst support. Catalysis Today, 20, 199–217. DOI: 10.1016/0920-5861(94)80003-0. http://dx.doi.org/10.1016/0920-5861(94)80003-010.1016/0920-5861(94)80003-0Suche in Google Scholar
[34] Yu, S. J., Jiang, P. P., Dong, Y. M., Zhang, P. B., Zhang, Y., & Zhang, W. J. (2012). Hydrothermal synthesis of nanosized sulfated zirconia as an efficient and reusable catalyst for esterification of acetic acid with n-butanol. Bulletin of the Korean Chemical Society, 33, 524–528. DOI:10.5012/bkcs.2012.33.2.524. http://dx.doi.org/10.5012/bkcs.2012.33.2.52410.5012/bkcs.2012.33.2.524Suche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Application of umbelliferone molecularly imprinted polymer in analysis of plant samples
- Determination of antioxidant activity using oxidative damage to plasmid DNA — pursuit of solvent optimization
- Nanosized sulfated zirconia as solid acid catalyst for the synthesis of 2-substituted benzimidazoles
- Removal of heavy metal ions from aqueous solutions using low-cost sorbents obtained from ash
- Base-catalysed reduction of pyruvic acid in near-critical water
- Solubility and micronisation of phenacetin in supercritical carbon dioxide
- Synthesis of nanostructured perovskite powders via simple carbonate co-precipitation
- Three-component one-pot reaction for the synthesis of β-amide ketones
- Spectral analysis of naringenin deprotonation in aqueous ethanol solutions
- Provenance study of volcanic glass using 266–1064 nm orthogonal double pulse laser induced breakdown spectroscopy
- A new, fully validated and interpreted quantitative structure-activity relationship model of p-aminosalicylic acid derivatives as neuraminidase inhibitors
- Interaction of oligonucleotides with benzo[c]phenanthridine alkaloid sanguilutine
Artikel in diesem Heft
- Application of umbelliferone molecularly imprinted polymer in analysis of plant samples
- Determination of antioxidant activity using oxidative damage to plasmid DNA — pursuit of solvent optimization
- Nanosized sulfated zirconia as solid acid catalyst for the synthesis of 2-substituted benzimidazoles
- Removal of heavy metal ions from aqueous solutions using low-cost sorbents obtained from ash
- Base-catalysed reduction of pyruvic acid in near-critical water
- Solubility and micronisation of phenacetin in supercritical carbon dioxide
- Synthesis of nanostructured perovskite powders via simple carbonate co-precipitation
- Three-component one-pot reaction for the synthesis of β-amide ketones
- Spectral analysis of naringenin deprotonation in aqueous ethanol solutions
- Provenance study of volcanic glass using 266–1064 nm orthogonal double pulse laser induced breakdown spectroscopy
- A new, fully validated and interpreted quantitative structure-activity relationship model of p-aminosalicylic acid derivatives as neuraminidase inhibitors
- Interaction of oligonucleotides with benzo[c]phenanthridine alkaloid sanguilutine