Startseite A new, fully validated and interpreted quantitative structure-activity relationship model of p-aminosalicylic acid derivatives as neuraminidase inhibitors
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A new, fully validated and interpreted quantitative structure-activity relationship model of p-aminosalicylic acid derivatives as neuraminidase inhibitors

  • Ana Hartmman EMAIL logo , Daniela Jornada und Eduardo Melo
Veröffentlicht/Copyright: 14. Februar 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A multivariate QSAR study with a set of 34 p-aminosalicylic acid derivatives, described as neuraminidase inhibitors of the H1N1 viruses, is presented in this work. The variable selection was performed with the Ordered Predictors Selection (OPS) algorithm and the model was built with the Partial Least Squares (PLS) regression method. Leave-N-out cross-validation and y-randomization tests showed that the model was robust and free from chance correlation. The external predictive ability was superior to the 3D-QSAR model previously published. Moreover, it was possible to perform a mechanistic interpretation, where the descriptors referred directly to the mechanism of interaction with the neuraminidase.

[1] Abed, Y., Baz, M., & Boivin, G. (2009). A novel neuraminidase deletion mutation conferring resistance to oseltamivir in clinical influenza A/H3N2 virus. The Journal of Infectious Disease, 199, 180–183. DOI: 10.1086/595736. http://dx.doi.org/10.1086/59573610.1086/595736Suche in Google Scholar PubMed

[2] Accelrys (2009). Discovery Studio Visualizer 2.5.5 [computer software]. San Diego, CA, USA: Accelrys, Inc. Suche in Google Scholar

[3] ACD/Labs (2010). ACD/ChemSketch 12 [computer software]. Toronto, Canada: Advanced Chemistry Development, Inc. Suche in Google Scholar

[4] Aptula, A. O., Jeliazkova, N. G., Schultz, T. W., & Cronin, M. T. D. (2005). The better predictive model: High q 2 for the training set or low root mean square error of prediction for the test set? QSAR & Combinatorial Science, 24, 385–396. DOI: 10.1002/qsar.200430909. http://dx.doi.org/10.1002/qsar.20043090910.1002/qsar.200430909Suche in Google Scholar

[5] Brazilian Health Surveillance Secretariat (2009). Situação epidemiológica da Influenza Pandęmica (H1N1) 2009 no Mundo e no Brasil, até a Semana Epidemiológica 47 de 2009. Retrieved November 20, 2012, from http://portal.saude.gov.br/portal/arquivos/pdf/boletim_influenza_se_47.pdf Suche in Google Scholar

[6] Consonni, V., Todeschini, R., & Pavan, M. (2002). Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. Journal of Chemical Information and Computer Science, 42, 682–692. DOI: 10.1021/ci015504a. 10.1021/ci015504aSuche in Google Scholar PubMed

[7] Dave, K., Gandhi, M., Panchal, H., & Vaidya, M. (2011). Revision of QSAR, docking, and molecular modeling studies of anti-influenza virus A (H1N1) drugs and targets: Analysis of hemagglutinins 3D structure. Current Computer-Aided Drug Design, 7, 255–262. http://dx.doi.org/10.2174/15734091179826030410.2174/157340911798260304Suche in Google Scholar PubMed

[8] de Fátima, A., Baptistella, L. H. B., Pilli, R. A., & Modolo, L. V. (2005). Sialic acids: from the comprehension of their involvement in biological processes to antiinfluenza drug design. Química Nova, 28, 306–316. DOI: 10.1590/s0100-40422005000200023. http://dx.doi.org/10.1590/S0100-4042200500020002310.1590/S0100-40422005000200023Suche in Google Scholar

[9] de Melo, E. B. (2012). A new quantitative structure-property relationship model to predict bioconcentration factors of polychlorinated biphenyls (PCBs) in fishes using E-state index and topological descriptors. Ecotoxicological and Environmental Safety, 75, 213–222. DOI: 10.1016/j.ecoenv.2011.08.026. http://dx.doi.org/10.1016/j.ecoenv.2011.08.02610.1016/j.ecoenv.2011.08.026Suche in Google Scholar PubMed

[10] de Melo, E. B., & Ferreira, M. M. C. (2009). Multivariate QSAR study of 4,5-dihydroxypyrimidine carboxamides as HIV-1 integrase inhibitors. European Journal of Medicinal Chemistry, 44, 3577–3583. DOI: 10.1016/j.ejmech.2009.03.001. http://dx.doi.org/10.1016/j.ejmech.2009.03.00110.1016/j.ejmech.2009.03.001Suche in Google Scholar PubMed

[11] Ekiert, D. C., Bhabha, G., Elsliger, M. A., Friesen, R. H. E., Jongeneelen, M., Throsby, M., Goudsmit, J., & Wilson, I. A. (2009). Antibody recognition of a highly conserved influenza virus epitope. Science, 324, 246–251. DOI: 10.1126/science.1171491. http://dx.doi.org/10.1126/science.117149110.1126/science.1171491Suche in Google Scholar PubMed PubMed Central

[12] Ekiert, D. C., Friesen, R. H. E., Bhabha, G., Kwaks, T., Jongeneelen, M., Yu, W. L., Ophorst, C., Cox, F., Korse, H. J. W. M., Brandenburg, B., Vogels, R., Brakenhoff, J. P. J., Kompier, R., Koldijk, M. H., Cornelissen, L. A. H. M., Poon, L. L. M., Peiris, M., Koudstaal, W., Wilson, I. A., & Goudsmit, J. (2011). A highly conserved neutralizing epitope on group 2 influenza A viruses. Science, 333, 843–850. DOI: 10.1126/science.1204839. http://dx.doi.org/10.1126/science.120483910.1126/science.1204839Suche in Google Scholar PubMed PubMed Central

[13] Eriksson, L., Jaworska, J., Worth, A. P., Cronin, M. T. D., McDowell, R. M., & Gramatica, P. (2003). Methods for reliability and uncertainty assessment and for applicability evaluations of classification and regression-based QSARs. Environmental Health Perspectives, 111, 1361–1375. DOI: 10.1289/ehp.5758. http://dx.doi.org/10.1289/ehp.575810.1289/ehp.5758Suche in Google Scholar PubMed PubMed Central

[14] Falagas, M. E., Koletsi, P. K., Vouloumanou, E. K., Rafailidis, P. I., Kapaskelis, A. M., & Rello, J. (2010). Effectiveness and safety of neuraminidase inhibitors in reducing influenza complications: a meta-analysis of randomized controlled trials. Journal of Antimicrobial Chemotherapy, 65, 1330–1346. DOI: 10.1093/jac/dkq158. http://dx.doi.org/10.1093/jac/dkq15810.1093/jac/dkq158Suche in Google Scholar

[15] Ferreira, M. M. C. (2002). Multivariate QSAR. Journal of the Brazilian Chemical Society, 13, 742–753. DOI: 10.1590/s0103-50532002000600004. 10.1590/S0103-50532002000600004Suche in Google Scholar

[16] Gaudio, A. C., & Zandonade, E. (2001). Proposition, validation and analysis of QSAR models. Quimica Nova, 24, 658–671. DOI: 10.1590/s0100-40422001000500013. http://dx.doi.org/10.1590/S0100-4042200100050001310.1590/S0100-40422001000500013Suche in Google Scholar

[17] Golbraikh, A., & Tropsha, A. (2002). Beware of q 2! Journal of Molecular Graphics and Modelling, 20, 269–276. DOI: 10.1016/s1093-3263(01)00123-1. http://dx.doi.org/10.1016/S1093-3263(01)00123-110.1016/S1093-3263(01)00123-1Suche in Google Scholar

[18] Golbraikh, A., Shen, M., Xiao, Z., Xiao, Y. D., Lee, K. H. & Tropsha, A. (2003). Rational selection of training and test set for the development of validated QSAR models. Journal of Computer-Aided Molecular Design, 17, 241–253. DOI: 10.1023/a:1025386326946. http://dx.doi.org/10.1023/A:102538632694610.1023/A:1025386326946Suche in Google Scholar

[19] González, M. P., Terán, C., Teijeira, M., & González-Moa, M. J. (2005). GETAWAY descriptors to predicting A2A adenosine receptors agonists. European Journal of Medicinal Chemistry, 40, 1080–1086. DOI: 10.1016/j.ejmech.2005.04.014. http://dx.doi.org/10.1016/j.ejmech.2005.04.01410.1016/j.ejmech.2005.04.014Suche in Google Scholar PubMed

[20] Gramatica, P. (2007). Principles of QSAR models validation: internal and external. QSAR & Combinatorial Science, 26, 694–701. DOI: 10.1002/qsar.200610151. http://dx.doi.org/10.1002/qsar.20061015110.1002/qsar.200610151Suche in Google Scholar

[21] Gupta, R. A., Gupta, A. K., Soni, L. K., & Kaskhedikar, S. G. (2009). Study of physicochemical properties-antitubercular activity relationship of naphthalene-1,4-dione analogs: A QSAR approach. Chemical Papers, 63, 723–730. DOI: 10.2478/s11696-009-0080-0. http://dx.doi.org/10.2478/s11696-009-0080-010.2478/s11696-009-0080-0Suche in Google Scholar

[22] Hernández, N., Kiralj, R., Ferreira, M. M. C., & Talavera, I. (2009). Critical comparative analysis, validation and interpretation of SVM and PLS regression models in a QSAR study on HIV-1 protease inhibitors. Chemometrics and Intelligent Laboratory Systems, 98, 65–77. DOI: 10.1016/j.chemolab.2009.04.012. http://dx.doi.org/10.1016/j.chemolab.2009.04.01210.1016/j.chemolab.2009.04.012Suche in Google Scholar

[23] Horimoto, T., & Kawaoka, T. (2001). Pandemic threat posed by avian influenza A viruses. Clinical Microbiology Reviews, 14, 129–149. DOI: 10.1128/cmr.14.1.129-149.2001. http://dx.doi.org/10.1128/CMR.14.1.129-149.200110.1128/CMR.14.1.129-149.2001Suche in Google Scholar PubMed PubMed Central

[24] HyperCube (2002). HyperChem 7.0 [computer software]. Gainesville, FL, USA: HyperCube, Inc. Suche in Google Scholar

[25] Infometrix (2007). Pirouette 4 [computer software]. Bothell, WA, USA: Infometrix, Inc. Suche in Google Scholar

[26] Karelson, M., Lobanov, V. S., & Katritzky, A. R. (1996). Quantum-chemical descriptors in QSAR/QSPR studies. Chemical Reviews, 96, 1027–1043. DOI: 10.1021/cr950202r. http://dx.doi.org/10.1021/cr950202r10.1021/cr950202rSuche in Google Scholar PubMed

[27] Katritzky, A. R., Petrukhin, R., Tatham, D., Basak, S., Benfenati, E., Karelson, M., & Maran, U. (2001). Interpretation of quantitative structure-property and -activity relationships. Journal of Chemical Information and Computer Science, 41, 679–685. DOI: 10.1021/ci000134w. 10.1021/ci000134wSuche in Google Scholar PubMed

[28] Kiralj, R., & Ferreira, M. M. C. (2009). Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. Journal of Brazilian Chemical Society, 20, 770–787. DOI: 10.1590/s0103-50532009000400021. http://dx.doi.org/10.1590/S0103-5053200900040002110.1590/S0103-50532009000400021Suche in Google Scholar

[29] Liu, P. X., & Long, W. (2009). Current mathematical methods used in QSAR/QSPR studies. International Journal of Molecular Science, 10, 1978–1998. DOI: 10.3390/ijms10051978. http://dx.doi.org/10.3390/ijms1005197810.3390/ijms10051978Suche in Google Scholar PubMed PubMed Central

[30] Luan, F., Melo, A., Borges, F., & Cordeiro, M. N. D. S. (2011). Affinity prediction on A3 adenosine receptor antagonists: the chemometric approach. Bioorganic & Medicinal Chemistry, 19, 6853–6859. DOI: 10.1016/j.bmc.2011.09.032. http://dx.doi.org/10.1016/j.bmc.2011.09.03210.1016/j.bmc.2011.09.032Suche in Google Scholar PubMed

[31] Marshall, S. J. (2005). Governments in a dilemma over bird flu. Retrieved November 20, 2012, from http://www.who.int/bulletin/volumes/83/5/infocus0505/en Suche in Google Scholar

[32] Martins, J. P. A., & Ferreira, M. M. C. (2010). QSAR modeling [computer software]. Campinas, SP, Brazil: Unicamp. Suche in Google Scholar

[33] Masoodi, T. A., Shaik, N. A., Shafi, G., Munshi, A., Ahamed, A. K., & Masoodi, Z. A. (2012). Comparative analysis of hemagglutinin of 2009 H1N1 influenza A pandemic indicates its evolution to 1918 H1N1 pandemic. Gene, 491, 200–204. DOI: 10.1016/j.gene.2011.09.024. http://dx.doi.org/10.1016/j.gene.2011.09.02410.1016/j.gene.2011.09.024Suche in Google Scholar PubMed

[34] Melagraki, G., Afantitis, A., Sarimveis, H., Koutentis, P. A., Markopolus, J., & Igglessi-Markopoulou, O. (2007). Optimization of biaryl piperidine and 4-amino-2-biarylurea MCH1 receptor antagonists using QSAR modeling, classification techniques and virtual screening. Journal of Computer-Aided Molecular Design, 21, 251–267. DOI: 10.1007/s10822-007-9112-4. http://dx.doi.org/10.1007/s10822-007-9112-410.1007/s10822-007-9112-4Suche in Google Scholar PubMed

[35] Molfetta, F. A., Bruni, A. T., Rosseli, F. P., & da Silva, A. B. F. (2007). A partial least squares and principal component regression study of quinone compounds with trypanocidal activity. Structural Chemistry, 18, 49–57. DOI: 10.1007/s11224-006-9120-3. http://dx.doi.org/10.1007/s11224-006-9120-310.1007/s11224-006-9120-3Suche in Google Scholar

[36] OECD (2007). Guidance document on the validation of (quantitative) structure-activity relationships [(Q)SAR] models. Retrieved November 20, 2012, from http://search.oecd.org/officialdocuments/displaydocumentpdf/?doclanguage=en&cote=env/jm/mono(2007)2 Suche in Google Scholar

[37] Ojha, P. K., Mitra, I., Das, R. N., & Roy, K. (2011). Further exploring r m2 metrics for validation of QSPR models. Chemometrics and Intelligent Laboratory Systems, 107, 194–205. DOI: 10.1016/j.chemolab.2011.03.011. http://dx.doi.org/10.1016/j.chemolab.2011.03.01110.1016/j.chemolab.2011.03.011Suche in Google Scholar

[38] Put, R., Xu, Q. S., Massart, D. L., & Heyden, Y. V. (2004). Multivariate adaptive regression splines (MARS) in chromatographic quantitative structure-retention relationship studies. Journal of Chromatography A, 1055, 11–19. DOI: 10.1016/j.chroma.2004.07.112. http://dx.doi.org/10.1016/j.chroma.2004.07.11210.1016/j.chroma.2004.07.112Suche in Google Scholar PubMed

[39] Ribeiro, F. A., & Ferreira, M. M. C. (2003). QSPR models of boiling point, octanol-water partition coefficient and retention time index of polycyclic aromatic hydrocarbons. Journal of Molecular Structure: THEOCHEM, 663, 109–126. DOI: 10.1016/j.theochem.2003.08.107. http://dx.doi.org/10.1016/j.theochem.2003.08.10710.1016/j.theochem.2003.08.107Suche in Google Scholar

[40] Rizzo, C., Ajelli, M., Merler, S., Pugliese, A., Barbetta, I., Salmaso, S., & Manfredi, P. (2011). Epidemiology and transmission dynamics of the 1918-19 pandemic influenza in Florence, Italy. Vaccine, 29(S2), B27–B32. DOI: 10.1016/j.vaccine.2011.02.049. http://dx.doi.org/10.1016/j.vaccine.2011.02.04910.1016/j.vaccine.2011.02.049Suche in Google Scholar PubMed

[41] Roy, P. P., Paul, S., Mitra, I., & Roy, K. (2009). On two novel parameters for validation of predictive QSAR models. Molecules, 14, 1660–1701. DOI: 10.3390/molecules15010604. http://dx.doi.org/10.3390/molecules1405166010.3390/molecules15010604Suche in Google Scholar

[42] Sharma, B. K., Singh, P., Pilania, P., Sarbhai, K., & Prabhakar, Y. S. (2011). CP-MLR/PLS directed QSAR study on apical sodium-codependent bile acid transporter inhibition activity of benzothiepines. Molecular Diversity, 15, 135–147. DOI: 10.1007/s11030-009-9220-2. http://dx.doi.org/10.1007/s11030-009-9220-210.1007/s11030-009-9220-2Suche in Google Scholar PubMed

[43] Silla, J. M., Nunes, C. A., Cormanich, R. A., Guerreiro, M. C., Ramalho, T. C., & Freitas, M. P. (2011). MIA-QSPR and effect of variable selection on the modeling of kinetic parameters related to activities of modified peptides against dengue type 2. Chemometrics and Intelligent Laboratory Systens, 108, 146–149. DOI: 10.1016/j.chemolab.2011.06.009. http://dx.doi.org/10.1016/j.chemolab.2011.06.00910.1016/j.chemolab.2011.06.009Suche in Google Scholar

[44] Silva, P. (2010). Farmacologia (8th ed.). Rio de Janeiro, RJ, Brazil: Guanabara Koogan. Suche in Google Scholar

[45] Stanton, D. T. (2003). On the physical interpretation of QSAR models. Journal of Chemical Information and Computer Science, 43, 1423–1433. DOI: 10.1021/ci0340658. 10.1021/ci0340658Suche in Google Scholar PubMed

[46] Teófilo, R. F., Martins, J. P. A., & Ferreira, M. M. C. (2009). Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression. Journal of Chemometrics, 23, 32–48. DOI: 10.1002/cem.1192. http://dx.doi.org/10.1002/cem.119210.1002/cem.1192Suche in Google Scholar

[47] Tetko, I. V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P., Palyulin, V. A., Radchenko, E. V., Zefirov, N. S., Makarenko, A. S., Tanchuk, V. Y., & Prokopenko, V. V. (2005). Virtual computational chemistry laboratory — design and description. Journal of Computer-Aided Molecular Design, 19, 453–463. DOI: 10.1007/s10822-005-8694-y. http://dx.doi.org/10.1007/s10822-005-8694-y10.1007/s10822-005-8694-ySuche in Google Scholar PubMed

[48] Todeschini, R., Consonni, V., Mauri, A., & Pavan, M. (2003). Dragon Web Version 3.0 [computer software]. Milano, Italia: Talete, Srl. Suche in Google Scholar

[49] Todeschini, R. C., & Consonni, V. (2009). Molecular descriptors for chemoinformatics (2th ed.). Weinheim, Germany: Wiley-VCH. http://dx.doi.org/10.1002/978352762876610.1002/9783527628766Suche in Google Scholar

[50] Trilla, A., Trilla, G., & Daer, C. (2005). The 1918 “Spanish flu” in Spain. Clinical Infectious Disease, 47, 668–673. DOI: 10.1086/590567. http://dx.doi.org/10.1086/59056710.1086/590567Suche in Google Scholar PubMed

[51] Wanderley, M. R., Sampaio, G. P., de Negreiros, M. A. M. P., & Casseb, G. B. (2011). Epidemiologial description of Influenza H1N1 cases in terciary medical service Rio Branco’s Urgency and Emergency Hospital. Revista da Sociedade Brasileira de Clínica Médica, 9, 279–282. Suche in Google Scholar

[52] Weininger, D. (1988). SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. Journal of Chemical Information and Computer Science, 28, 31–36. DOI: 10.1021/ci00057a005. 10.1021/ci00057a005Suche in Google Scholar

[53] Wilson, J. M., Iannarone, M., & Wang, C. (2009). Media reporting of the emergence of the 1968 influenza pandemic in Hong Kong: Implications for modern-day situational awareness. Disaster Medicine and Public Health Preparedness, 3, S148–S153. http://dx.doi.org/10.1097/DMP.0b013e3181abd60310.1097/DMP.0b013e3181abd603Suche in Google Scholar

[54] Wold, S. (1995). PLS for multivariate linear modeling. In H. van de Waterbeemd (Ed.), Chemometric methods in molecular design (pp. 195–218). Weinheim, Germany: Wiley-VCH. DOI: 10.1002/9783527615452. 10.1002/9783527615452Suche in Google Scholar

[55] Wold, S., & Eriksson, L. (1995). Validation tools. In H. van de Waterbeemd (Ed.), Chemometric methods in molecular design (pp. 309–318). Weinheim, Germany: Wiley-VCH. DOI: 10.1002/9783527615452. http://dx.doi.org/10.1002/9783527615452.ch510.1002/9783527615452Suche in Google Scholar

[56] Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130. DOI: 10.1016/s0169-7439(01)00155-1. http://dx.doi.org/10.1016/S0169-7439(01)00155-110.1016/S0169-7439(01)00155-1Suche in Google Scholar

[57] World Health Organization (2009a). Pandemic (H1N1) 2009 — update 80. Retrieved November 20, 2012, from: http://www.who.int/csr/don/20091223/en Suche in Google Scholar

[58] World Health Organization (2009b). WHO recommendations on pandemic (H1N1) 2009 vaccines. Retrieved November 20, 2012, from http://www.who.int/csr/disease/swineflu/notes/h1n1vaccine20090713/en/index.html Suche in Google Scholar

[59] World Health Organization (2011). Standardization of terminology of the pandemic A(H1N1)2009 virus. Retrieved November 20, 2012, from http://www.who.int/influenza/gisrslaboratory/terminology_ah1n1pdm09/en/index.html Suche in Google Scholar

[60] Xu, X. J., Zhu, X. Y., Dwek, R. A., Stevens, J., & Wilson, I. A. (2008). Structural characterization of the 1918 influenza virus H1N1 neuraminidase. Journal of Virology, 82, 10493–10501. DOI: 10.1128/jvi.00959-08. http://dx.doi.org/10.1128/JVI.00959-0810.1128/JVI.00959-08Suche in Google Scholar PubMed PubMed Central

[61] Zhang, J., Wang, Q., Fang, H., Xu, W. F., Liu, A., & Du, G. H. (2008). Design, synthesis, inhibitory activity, and SAR studies of hydrophobic p-aminosalicylic acid derivatives as neuraminidase inhibitors. Bioorganic & Medicinal Chemistry, 16, 3839–3847. DOI: 10.1016/j.bmc.2008.01.036. http://dx.doi.org/10.1016/j.bmc.2008.01.03610.1016/j.bmc.2008.01.036Suche in Google Scholar PubMed

Published Online: 2013-2-14
Published in Print: 2013-5-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0321-0/html
Button zum nach oben scrollen