Abstract
Oxidative stress plays a key role in the pathophysiology of many diseases. Hydroxyl radical is the oxidative species most commonly causing damage to cells. The aim of this work was to optimize the method for antioxidant activity determination on a model lipophilic geranylated flavanone, diplacone. This method uses protection of plasmid DNA from oxidation by a hydroxyl radical generated by the Fenton reaction involving oxidation of metal ions using H2O2 and ascorbate. The method was optimized for lipophilic compounds using several solvents and co-solvents. It was found that (2-hydroxypropyl)-β-cyclodextrin (0.1 mass % aq. sol.) is the best co-solvent for our model lipophilic compound to measure the antioxidant activity by the method presented. Other solvents, namely dimethyl sulfoxide, Cremophor EL® (0.1 mass % aq. sol.), ethanol, and methanol, were not suitable for the determination of the antioxidant activity by the method described. Tween 80 (0.1 mass % aq. sol.) and a mixture of 10 vol. % ethanol and 9 mass % bovine serum albumin (aq. sol.) significantly decreased the antioxidant activity of the model lipophilic compound and thus were not suitable for this method.
[1] Bektaşoğlu, B., Çelik, S. E., Özyürek, M., Güçlü, K., & Apak, R. (2006). Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method. Biochemical and Biophysical Research Communication, 345, 1194–1200. DOI:10.1016/j.bbrc.2006.05.038. http://dx.doi.org/10.1016/j.bbrc.2006.05.03810.1016/j.bbrc.2006.05.038Suche in Google Scholar
[2] Calabrò, M. L., Tommasini, S., Donato, P., Raneri, D., Stancanelli, R., Ficarra, P., Ficarra, R., Costa, C., Catania, S., Rustichelli, C., & Gamberini, G. (2004). Effects of α- and β- cyclodextrin complexation on physico-chemical properties and antioxidant activity of some 3-hydroxyflavones. Journal of Pharmaceutical and Biomedical Analysis, 35, 365–377. DOI:10.1016/j.jpba.2003.12.005. http://dx.doi.org/10.1016/j.jpba.2003.12.00510.1016/j.jpba.2003.12.005Suche in Google Scholar
[3] Chiou, S. H. (1983). DNA- and protein-scission activities of ascorbate in presence of copper ion and a copper-peptide complex. Journal of Biochemistry, 94, 1259–1267. 10.1093/oxfordjournals.jbchem.a134471Suche in Google Scholar
[4] Chiou, S. H. (1984). DNA-scission activities of ascorbate in presence of metal chelates. Journal of Biochemistry, 96, 1307–1310. 10.1093/oxfordjournals.jbchem.a134951Suche in Google Scholar
[5] Cooke, M. S., Olinski, R., & Evans, M. D. (2006). Does measurement of oxidative damage to DNA have clinical significance? Clinica Chimica Acta, 365, 30–49. DOI:10.1016/j.cca.2005.09.009. http://dx.doi.org/10.1016/j.cca.2005.09.00910.1016/j.cca.2005.09.009Suche in Google Scholar
[6] Fukuzawa, K., Saitoh, Y., Akai, K., Kogure, K., Ueno, S., Tokumura, A., Otagiri, M., & Shibata, A. (2005). Antioxidant effect of bovine serum albumin on membrane lipid peroxidation induced by iron chelate and superoxide. Biochimica et Biophysica Acta, Biomembranes, 1668, 145–155. DOI:10.1016/j.bbamem.2004.12.006. http://dx.doi.org/10.1016/j.bbamem.2004.12.00610.1016/j.bbamem.2004.12.006Suche in Google Scholar
[7] Gelderblom, H., Verweij, J., Nooter, A., & Sparreboom, A. (2001). Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. European Journal of Cancer, 37, 1590–1598. DOI: 10.1016/s0959-8049(01)00171-x. http://dx.doi.org/10.1016/S0959-8049(01)00171-X10.1016/S0959-8049(01)00171-XSuche in Google Scholar
[8] Gould, S., & Scott, R. C. (2005). 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): A toxicology review. Food and Chemical Toxicology, 43, 1451–1459. DOI:10.1016/j.fct.2005.03.007. http://dx.doi.org/10.1016/j.fct.2005.03.00710.1016/j.fct.2005.03.007Suche in Google Scholar PubMed
[9] Gutiérrez, M. B., San Miguel, B., Villares, C., González Gallego, J., & Tuñón, M. J. (2006). Oxidative stress induced by Cremophor EL in not accompanied by changes in NK-κB activation of iNOS expression. Toxicology, 222, 125–131. DOI:10.1016/j.tox.2006.02.002. http://dx.doi.org/10.1016/j.tox.2006.02.00210.1016/j.tox.2006.02.002Suche in Google Scholar PubMed
[10] Iwase, K., Oyama, Y., Tatsuishi, T., Yamaguchi, J. Y., Nishimimura, Y., Kanada, A., Kobayashi, M., Maemura, Y., Ishida, S., & Okano, Y. (2004). Cremophor EL augments the cytotoxicity of hydrogen peroxide in lymphocytes dissociated from rat thymus glands. Toxicology Letters, 154, 143–148. DOI:10.1016/j.toxlet.2004.08.003. http://dx.doi.org/10.1016/j.toxlet.2004.08.00310.1016/j.toxlet.2004.08.003Suche in Google Scholar PubMed
[11] Jiang, T. F., Du, X., & Shi, Y. P. (2004). Determination of flavonoids from Paulownia tomentosa (Thunb) steud by micellar electrokinetic capillary electrophoresis. Chromatographia, 59, 255–258. DOI: 10.1365/s10337-003-0154-z. Suche in Google Scholar
[12] Kishioshka, T., Iida, C., Fujii, K., Nagae, R., Onishi, Y., Ichi, I., & Kojo, S. (2007). Effect of dimethyl sulphoxide on oxidative stress, activation of mitogen activated protein kinase and necrosis caused by thioacetamide in the rat liver. European Journal of Pharmacology, 564, 190–195. DOI:10.1016/j.ejphar.2007.03.001. http://dx.doi.org/10.1016/j.ejphar.2007.03.00110.1016/j.ejphar.2007.03.001Suche in Google Scholar
[13] Koch, O. R., Pani, G., Borrello, S., Colavitti, R., Cravero, A., Farrò, S., & Galeotti, T. (2004). Oxidative stress and antioxidant defences in ethanol-induced cell injury. Molecular Aspects of Medicine, 25, 191–198. DOI:10.1016/j.mam.2004.02.019. http://dx.doi.org/10.1016/j.mam.2004.02.01910.1016/j.mam.2004.02.019Suche in Google Scholar
[14] Loureiro, S. O., Heimfarth, L., Reis, K., Wild, L., Andrade, C., Guma, F. T. C. R., Gonçalves, C. A., & Pessoa-Pureur, R. (2011). Acute ethanol exposure disrupts actin cytoskeleton and generates reactive oxygen species in c6 cells. Toxicology in Vitro, 25, 28–36. DOI:10.1016/j.tiv.2010.09.003. http://dx.doi.org/10.1016/j.tiv.2010.09.00310.1016/j.tiv.2010.09.003Suche in Google Scholar
[15] Lu, Z., Cheng, B., Hu, Y., Zhang, Y. H., & Zou, G. L. (2009). Complexation of resveratrol with cyclodextrins: Solubility and antioxidant activity. Food Chemistry, 113, 17–20. DOI:10.1016/j.foodchem.2008.04.042. http://dx.doi.org/10.1016/j.foodchem.2008.04.04210.1016/j.foodchem.2008.04.042Suche in Google Scholar
[16] Ma, Q. (2010). Transcriptional responses to oxidative stress: Pathological and toxicological implications. Pharmacology & Therapeutics, 125, 376–393. DOI: 10.1016/j.pharmthera.2009.11.004. http://dx.doi.org/10.1016/j.pharmthera.2009.11.00410.1016/j.pharmthera.2009.11.004Suche in Google Scholar
[17] National Toxicology Program (1992). NTP Toxicology and carcinogenesis studies of polysorbate 80 (CAS No. 9005-65-6) in F344/N rats and B6C3F1 mice (Feed studies). National Toxicological Program, Technical Report Series, 415, 1–225. Suche in Google Scholar
[18] Parthasarathy, J. S., Kumar, R. S., Manikandan, S., Narayanan, G. S., Kumar, R. V., & Devi, R. S. (2006). Effect of methanolinduced oxidative stress on the neuroimmune system of experimental rats. Chemico-Biological Interactions, 161, 14–25. DOI:10.1016/j.cbi.2006.02.005. http://dx.doi.org/10.1016/j.cbi.2006.02.00510.1016/j.cbi.2006.02.005Suche in Google Scholar
[19] Que, B. G., Downey, K. M., & So, A. G. (1980). Degradation of deoxyribonucleic acid by 1,10-phenanthroline-copper complex: the role of hydroxyl radicals. Biochemistry, 19, 5987–5991. DOI: 10.1021/bi00567a007. http://dx.doi.org/10.1021/bi00567a00710.1021/bi00567a007Suche in Google Scholar
[20] Roche, M., Rondeau, P., Singh, N. R., Tarnus, E., & Bourdon, E. (2008). The antioxidant properties of serum albumin. FEBS Letters, 582, 1783–1787. DOI: 10.1016/j.febslet.2008.04.057. http://dx.doi.org/10.1016/j.febslet.2008.04.05710.1016/j.febslet.2008.04.057Suche in Google Scholar
[21] Sagripanti, J. L., & Kraemer, K. H. (1989). Site-specific oxidative DNA damage at polyguanosines produced by copper plus hydrogen peroxide. Journal of Biological Chemistry, 264, 1729–1734. 10.1016/S0021-9258(18)94247-XSuche in Google Scholar
[22] Santos, N. C., Figueira-Coelho, J., Martins-Silva, J., & Saldanha, C. (2003). Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochemical Pharmacology, 65, 1035–1041. DOI: 10.1016/s0006-2952(03)00002-9. http://dx.doi.org/10.1016/S0006-2952(03)00002-910.1016/S0006-2952(03)00002-9Suche in Google Scholar
[23] Šmejkal, K., Grycová, L., Marek, R., Lemière, F., Jankovská, D., Forejtníková, H., Vančo, J., & Suchý, V. (2007). C-Geranyl compounds from Paulownia tomentosa fruits. Journal of Natural Products, 70, 1244–1248. DOI: 10.1021/np070063w. http://dx.doi.org/10.1021/np070063w10.1021/np070063wSuche in Google Scholar PubMed
[24] Tatsuishi, T., Oyama, Y., Iwase, K., Yamaguchi, J. Y., Kobayashi, M., Nishimura, Y., Kanada, A., & Hirama, S. (2005). Polysorbate 80 increases the susceptibility to oxidative stress in rat thymocytes. Toxicology, 207, 7–14. DOI:10.1016/j.tox.2004.07.020. http://dx.doi.org/10.1016/j.tox.2004.07.02010.1016/j.tox.2004.07.020Suche in Google Scholar PubMed
[25] Zima, A., Hošek, J., Treml, J., Muselík, J., Suchý, P., Pražanová, G., Lopes, A., & Žemlička, M. (2010). Antiradical and cytoprotective activities of several C-geranyl-substituted flavanones from Paulownia tomentosa fruit. Molecules, 15, 6035–6049. DOI: 10.3390/molecules15096035. http://dx.doi.org/10.3390/molecules1509603510.3390/molecules15096035Suche in Google Scholar PubMed PubMed Central
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Application of umbelliferone molecularly imprinted polymer in analysis of plant samples
- Determination of antioxidant activity using oxidative damage to plasmid DNA — pursuit of solvent optimization
- Nanosized sulfated zirconia as solid acid catalyst for the synthesis of 2-substituted benzimidazoles
- Removal of heavy metal ions from aqueous solutions using low-cost sorbents obtained from ash
- Base-catalysed reduction of pyruvic acid in near-critical water
- Solubility and micronisation of phenacetin in supercritical carbon dioxide
- Synthesis of nanostructured perovskite powders via simple carbonate co-precipitation
- Three-component one-pot reaction for the synthesis of β-amide ketones
- Spectral analysis of naringenin deprotonation in aqueous ethanol solutions
- Provenance study of volcanic glass using 266–1064 nm orthogonal double pulse laser induced breakdown spectroscopy
- A new, fully validated and interpreted quantitative structure-activity relationship model of p-aminosalicylic acid derivatives as neuraminidase inhibitors
- Interaction of oligonucleotides with benzo[c]phenanthridine alkaloid sanguilutine
Artikel in diesem Heft
- Application of umbelliferone molecularly imprinted polymer in analysis of plant samples
- Determination of antioxidant activity using oxidative damage to plasmid DNA — pursuit of solvent optimization
- Nanosized sulfated zirconia as solid acid catalyst for the synthesis of 2-substituted benzimidazoles
- Removal of heavy metal ions from aqueous solutions using low-cost sorbents obtained from ash
- Base-catalysed reduction of pyruvic acid in near-critical water
- Solubility and micronisation of phenacetin in supercritical carbon dioxide
- Synthesis of nanostructured perovskite powders via simple carbonate co-precipitation
- Three-component one-pot reaction for the synthesis of β-amide ketones
- Spectral analysis of naringenin deprotonation in aqueous ethanol solutions
- Provenance study of volcanic glass using 266–1064 nm orthogonal double pulse laser induced breakdown spectroscopy
- A new, fully validated and interpreted quantitative structure-activity relationship model of p-aminosalicylic acid derivatives as neuraminidase inhibitors
- Interaction of oligonucleotides with benzo[c]phenanthridine alkaloid sanguilutine