Home Base-catalysed reduction of pyruvic acid in near-critical water
Article
Licensed
Unlicensed Requires Authentication

Base-catalysed reduction of pyruvic acid in near-critical water

  • Li Luo EMAIL logo , Zhi Hou , Yuan Wang and Li Dai
Published/Copyright: February 14, 2013
Become an author with De Gruyter Brill

Abstract

The reduction of pyruvic acid in near-critical water has successfully been conducted under conditions of various temperatures, pressures, reaction time and the presence of formic acid as the reducing agent. In this work, additives (K2CO3, KHCO3, and sodium acetate) used in the reduction of pyruvic acid were also investigated. The results showed that by adding K2CO3 (25 mole %) a markedly higher lactic acid yield (70.7 %) was obtained than without additives (31.3 %) at 573.15 K, pressure of 8.59 MPa, 60 min, and in the presence of 2 mol L−1 formic acid. As a base catalyst, K2CO3 definitely accelerated the reduction of pyruvic acid. The reaction rate constants, average apparent activation energy and pre-exponential factor were evaluated in accordance with the Arrhenius equation. The reaction mechanism of the reduction was proposed on the basis of the experimental results.

[1] Adsul, M. G., Varma, A. J., & Gokhale, D. V. (2007). Lactic acid production from waste sugarcane bagasse derived cellulose. Green Chemistry, 9, 58–62. DOI: 10.1039/b605839f. http://dx.doi.org/10.1039/b605839f10.1039/B605839FSearch in Google Scholar

[2] Fujii, A., Hashiguchi, S., Uematsu, N., Ikariya, T., & Noyori, R. (1996). Ruthenium(II)-catalyzed asymmetric transfer hydrogenation of ketones using a formic acid-triethylamine mixture. Journal of the American Chemical Society, 118, 2521–2522. DOI: 10.1021/ja954126l. http://dx.doi.org/10.1021/ja954126l10.1021/ja954126lSearch in Google Scholar

[3] Ashby, E. E., Coleman, D. T., III, & Gamasa, M. P. (1983). Evidence supporting a single electron transfer pathway in the Cannizzaro reaction. Tetrahedron Letters, 24, 851–854. DOI: 10.1016/s0040-4039(00)81546-4. http://dx.doi.org/10.1016/S0040-4039(00)81546-410.1016/S0040-4039(00)81546-4Search in Google Scholar

[4] Ashby, E. C., Coleman, D., & Gamasa, M. (1987). Single electron transfer in the Cannizzaro reaction. The Journal of Organic Chemistry, 52, 4079–4085. DOI: 10.1021/jo00227a025. http://dx.doi.org/10.1021/jo00227a02510.1021/jo00227a025Search in Google Scholar

[5] Bröll, D., Kaul, C., Krämer, A., Krammer, P., Richter, T., Jung, M., Vogel, H., & Zehner, P. (1999). Chemistry in supercritical water. Angewandte Chemie International Edition, 38, 2998–3014. DOI: 10.1002/(SICI)1521-3773(19991018)38:20〈2998::AID-ANIE2998〉3.0.CO;2-L. http://dx.doi.org/10.1002/(SICI)1521-3773(19991018)38:20<2998::AID-ANIE2998>3.0.CO;2-L10.1002/(SICI)1521-3773(19991018)38:20<2998::AID-ANIE2998>3.0.CO;2-LSearch in Google Scholar

[6] Chang, Y. J., Wang, Z. Z., Luo, L. G., & Dai, L. Y. (2012). Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water. Chemical Papers, 66, 33–38. DOI: 10.2478/s11696-011-0093-3. http://dx.doi.org/10.2478/s11696-011-0093-310.2478/s11696-011-0093-3Search in Google Scholar

[7] Chung, S. K. (1982). Mechanism of the Cannizzaro reaction: possible involvement of radical intermediates. Journal of the Chemical Society, Chemical Communications, 1982, 480–481. DOI:10.1039/c39820000480. http://dx.doi.org/10.1039/c3982000048010.1039/c39820000480Search in Google Scholar

[8] Duan, P. G., Li, S., Wang, Z. Z., & Dai, L. Y. (2007a). Hydrolysis kinetics and mechanism of adipamide in high temperature water. Chemical Engineering Research and Design, 88, 1067–1072. DOI:10.1016/j.cherd.2010.01.031. http://dx.doi.org/10.1016/j.cherd.2010.01.03110.1016/j.cherd.2010.01.031Search in Google Scholar

[9] Duan, P. G., Wang, X., & Dai, L. Y. (2007b). Noncatalytic hydrolysis of iminodiacetonitrile in near-critical water-A green process for the manufacture of iminodiacetic acid. Chemical Engineering & Technology, 30, 265–269. DOI:10.1002/ceat.200600298. http://dx.doi.org/10.1002/ceat.20060029810.1002/ceat.200600298Search in Google Scholar

[10] Geissman, T. A. (1944). The Cannizzaro reaction. In Organic reactions (Vol. II, Chapter 3, pp. 94–113). New York, NY, USA: Wiley. DOI: 10.1002/0471264180.or002.03. 10.1002/0471264180.or002.03Search in Google Scholar

[11] Ikushima, Y., Hatakeda, K., Sato, O., Yokoyama, T., & Arai, M. (2001). Structure and base catalysis of supercritical water in the noncatalytic benzaldehyde disproportionation using water at high temperatures and pressures. Angewandte Chemie International Edition, 40, 210–213. DOI: 10.1002/1521-3773(20010105)40:1〈210::AID-ANIE210〉3.0.CO;2-7. http://dx.doi.org/10.1002/1521-3773(20010105)40:1<210::AID-ANIE210>3.0.CO;2-710.1002/1521-3773(20010105)40:1<210::AID-ANIE210>3.0.CO;2-7Search in Google Scholar

[12] Inkinen, S., Hakkarainen, M., Albertsson, A. C., & Södergård, A. (2011). From lactic acid to poly(lactic acid) (PLA): Characterization and analysis of PLA and its precursors. Biomacromolecules, 12, 523–532. DOI: 10.1021/bm101302t. http://dx.doi.org/10.1021/bm101302t10.1021/bm101302tSearch in Google Scholar

[13] Joo, M. J., Merkel, C., Auras, R., & Almenar, E. (2012). Development and characterization of antimicrobial poly (l-lactic acid) containing trans-2-hexenal trapped in cyclodextrins. International Journal of Food Microbiology, 153, 297–305. DOI:10.1016/j.ijfoodmicro.2011.11.015. http://dx.doi.org/10.1016/j.ijfoodmicro.2011.11.01510.1016/j.ijfoodmicro.2011.11.015Search in Google Scholar

[14] Kabyemela, B. M., Adschiri, T., Malaluan, R. M., & Arai, K. (1997). Kinetics of glucose epimerization and decomposition in subcritical and supercritical water. Industrial & Engineering Chemistry Research, 36, 1552–1558. DOI: 10.1021/ie960250h. http://dx.doi.org/10.1021/ie960250h10.1021/ie960250hSearch in Google Scholar

[15] Kruse, A., & Dinjus, E. (2007). Hot compressed water as reaction medium and reactant: Properties and synthesis reactions. The Journal of Supercritical Fluids, 39, 362–380. DOI:10.1016/j.supflu.2006.03.016. http://dx.doi.org/10.1016/j.supflu.2006.03.01610.1016/j.supflu.2006.03.016Search in Google Scholar

[16] Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., & Maciel Filho, R. (2012). Poly-lactic acid synthesis for application in biomedical devices — A review. Biotechnology Advances, 30, 321–328. DOI:10.1016/j.biotechadv.2011.06.019. http://dx.doi.org/10.1016/j.biotechadv.2011.06.01910.1016/j.biotechadv.2011.06.019Search in Google Scholar

[17] Li, L. X., Portela, J. R., Vallejo, D., & Gloyna, E. F. (1999). Oxidation and hydrolysis of lactic acid in near-critical water. Industrial & Engineering Chemistry Research, 38, 2599–2606. DOI: 10.1021/ie980520r. http://dx.doi.org/10.1021/ie980520r10.1021/ie980520rSearch in Google Scholar

[18] Matharu, D. S., Morris, D. J., Clarkson, G. J., & Wills, M. (2006). An outstanding catalyst for asymmetric transfer hydrogenation in aqueous solution and formic acid/triethylamine. Chemical Communications, 2006, 3232–3234. DOI: 10.1039/b606288a. http://dx.doi.org/10.1039/b606288a10.1039/b606288aSearch in Google Scholar

[19] Naskar, S., & Bhattacharjee, M. (2007). Selective N-monoalkylation of anilines catalyzed by a cationic ruthenium(II) compound. Tetrahedron Letters, 48, 3367–3370. DOI: 10.1016/j.tetlet.2007.03.075. http://dx.doi.org/10.1016/j.tetlet.2007.03.07510.1016/j.tetlet.2007.03.075Search in Google Scholar

[20] Nolen, S. A., Liotta, C. L., Eckert, C. A., & Gläser, R. (2003). The catalytic opportunities of near-critical water: a benign medium for conventionally acid and base catalyzed condensations for organic synthesis. Green Chemistry, 2003, 663–669. DOI: 10.1039/b308499j. http://dx.doi.org/10.1039/b308499j10.1039/B308499JSearch in Google Scholar

[21] Panwar, N. L., Kothari, R., & Tyagi, V. V. (2012). Thermo chemical conversion of biomass — Eco friendly energy routes. Renewable & Sustainable Energy Reviews, 16, 1801–1816. DOI:10.1016/j.rser.2012.01.024. http://dx.doi.org/10.1016/j.rser.2012.01.02410.1016/j.rser.2012.01.024Search in Google Scholar

[22] Sato, N., Quitain, A. T., Kang, K., Daimon, H., & Fujie, K. (2004). Reaction kinetics of amino acid decomposition in high-temperature and high-pressure water. Industrial & Engineering Chemistry Research, 43, 3217–3222. DOI: 10.1021/ie020733n. http://dx.doi.org/10.1021/ie020733n10.1021/ie020733nSearch in Google Scholar

[23] Savage, P. E. (1999). Organic chemical reactions in supercritical water. Chemical Reviews, 99, 603–621. DOI: 10.1021/cr9700989. http://dx.doi.org/10.1021/cr970098910.1021/cr9700989Search in Google Scholar

[24] Siskin, M., & Katritzky, A. R. (2001). Reactivity of organic compounds in superheated water: General background. Chemical Reviews, 101, 825–836. DOI: 10.1021/cr000088z. http://dx.doi.org/10.1021/cr000088z10.1021/cr000088zSearch in Google Scholar

[25] Socha, R. F., & Weiss, A. H., & Sakharov, M. M. (1981). Homogeneously catalyzed condensation of formaldehyde to carbohydrates: VII. An overall formose reaction model. Journal of Catalysis, 67, 207–217. DOI: 10.1016/0021-9517(81)90272-4. 10.1016/0021-9517(81)90272-4Search in Google Scholar

[26] Swain, C. G., Powell, A. L., Sheppard, W. A., & Morgan, C. R. (1979). Mechanism of the Cannizzaro reaction. Journal of the American Chemical Society, 101, 3576–3583. DOI: 10.1021/ja00507a023. http://dx.doi.org/10.1021/ja00507a02310.1021/ja00507a023Search in Google Scholar

[27] Wang, C. W., Zhou, F. L., Yang, Z., Wang, W. G., Yu, F. Q., Wu, Y. X., & Chi, R. A. (2012). Hydrolysis of cellulose into reducing sugar via hot-compressed ethanol/water mixture. Biomass & Bioenergy, 42, 143–150. DOI: 10.1016/j.biombioe.2012.03.004. http://dx.doi.org/10.1016/j.biombioe.2012.03.00410.1016/j.biombioe.2012.03.004Search in Google Scholar

[28] Watanabe, M., Sato, T., Inomata, H., Smith, R. L., Jr., Arai, K., Kruse, A., & Dinjus, E. (2004). Chemical reactions of C1 compounds in near-critical and supercritical water. Chemical Reviews, 104, 5803–5821. DOI: 10.1021/cr020415y. http://dx.doi.org/10.1021/cr020415y10.1021/cr020415ySearch in Google Scholar PubMed

[29] Wee, Y. J., Yun, J. S., Kim, D., & Ryu, H.W. (2006). Batch and repeated batch production of L(+)-lactic acid by Enterococcus faecalis RKY1 using wood hydrolyzate and corn steep liquor. Journal of Industrial Microbiology & Biotechnology, 33, 431–435. DOI: 10.1007/s10295-006-0084-5. http://dx.doi.org/10.1007/s10295-006-0084-510.1007/s10295-006-0084-5Search in Google Scholar PubMed

[30] Yagasaki, T., Saito, S., & Ohmine, I. (2002). A theoretical study on decomposition of formic acid in sub- and supercritical water. The Journal of Chemical Physics, 117, 7631–7639. DOI: 10.1063/1.1509057. http://dx.doi.org/10.1063/1.150905710.1063/1.1509057Search in Google Scholar

Published Online: 2013-2-14
Published in Print: 2013-5-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0308-x/pdf
Scroll to top button