Abstract
Twenty acid chlorides, 4-(mono/di-benzyloxy)-4-ketobutanoyl chlorides (Ia–XXa) were synthesised by the reaction of monoesters of succinic acid with thionyl chloride. The product thus obtained (4-benzyloxy-4-ketobutanoyl chlorides) was treated with diethylcadmium to convert it into the corresponding keto-esters (Ib–XXb), the mono/di-benzyl-γ-ketohexanoates, with a good yield. All the compounds thus prepared were characterised by physical, spectroscopic (UV-VIS, IR, 1H NMR, 13C NMR), and mass measurements techniques.
[1] Arends, I. W. C. E., & Sheldon R. A. (2004). Modern oxidation of alcohols using environmentally benign oxidants. In J. E. Bäckvall (Ed.), Modern oxidation methods (pp. 83–118). Weinheim, Germany: Wiley-VCH. Suche in Google Scholar
[2] Ballini, R., Barboni, L., Bosica, G., & Fiorini, D. (2002). Onepot synthesis of γ-diketones, γ-keto esters, and conjugated cyclopentenones from nitroalkanes. Synthesis, 18, 2725–2728. DOI: 10.1055/s-2002-35993. http://dx.doi.org/10.1055/s-2002-3599310.1055/s-2002-35993Suche in Google Scholar
[3] Bandgar, B. P., Hashmi, A. M., & Pandit, S. S. (2005). Facile and selective transesterification of β-keto esters using NaIO4, KIO4, and anhydrous CaCl2 as inexpensive catalysts under neutral conditions. Journal of the Chinese Chemical Society, 52, 1101–1104. 10.1002/jccs.200500157Suche in Google Scholar
[4] Bansal, R. K. (1996). Synthetic approaches in organic chemistry. Sudbury, MA, USA: Jones and Bartlett. Suche in Google Scholar
[5] Brockman, J. A., Jr., & Fabio, P. F. (1957). Syntheses of 6-ethyl-8-mercaptooctanoic acid and its homologs. Journal of the American Chemical Society, 79, 5027–5029. DOI: 10.1021/ja01575a053. http://dx.doi.org/10.1021/ja01575a05310.1021/ja01575a053Suche in Google Scholar
[6] Cason, J. (1942). Branched-chain fatty acids. I. Synthesis of 17-methyloctadecanoic acid. Journal of the American Chemical Society, 64, 1106–1110. DOI: 10.1021/ja01257a029. http://dx.doi.org/10.1021/ja01257a02910.1021/ja01257a029Suche in Google Scholar
[7] Cason, J. (1946). Branched-chain fatty acids. IV. A further study of the preparation of ketones and keto esters by means of orgaocadmium reagents. Journal of the American Chemical Society, 68, 2078–2081. DOI: 10.1021/ja01214a061. http://dx.doi.org/10.1021/ja01214a06110.1021/ja01214a061Suche in Google Scholar
[8] Cason, J., & Prout, F. S. (1944). Branched-chain fatty acids. II. Syntheses in the C19 and C25 series. Preparation of keto esters. Journal of the American Chemical Society, 66, 46–50. DOI: 10.1021/ja01229a015. http://dx.doi.org/10.1021/ja01229a01510.1021/ja01229a015Suche in Google Scholar
[9] Cason, J., & Prout, F. S. (1948). Methyl 4-keto-7-methyloctanoate. Organic Syntheses, 28, 75. Suche in Google Scholar
[10] Cason, J., Taylor, P. B., & Williams, D. A. (1951). Branchedchain fatty acids. XX. Synthesis of compounds useful for relating melting point to structure. Journal of Organic Chemistry, 16, 1187–1192. DOI: 10.1021/jo50002a002. http://dx.doi.org/10.1021/jo50002a00210.1021/jo50002a002Suche in Google Scholar
[11] Csende, F. (2002). Some alternative synthetic routes to γ- and δ-oxo acid derivatives. Acta Chimica Slovenica, 49, 663–676. Suche in Google Scholar
[12] Csende, F., Szabó, Z., & Stájer, G. (1993). Synthesis and structural study of new saturated isoindol-1-one derivatives. Heterocycles, 36, 1809–1821. DOI: 10.3987/COM-93-6366. http://dx.doi.org/10.3987/COM-93-636610.3987/COM-93-6366Suche in Google Scholar
[13] Dahl, A. C., Fjeldberg, M., & Madsen, J. O. (1999). Baker’s yeast: improving the D-stereoselectivity in reduction of 3-oxo esters. Tetrahedron: Asymmetry, 10, 551–559. DOI: 10.1016/s0957-4166(99)00025-7. http://dx.doi.org/10.1016/S0957-4166(99)00025-710.1016/S0957-4166(99)00025-7Suche in Google Scholar
[14] Forni, A., Moretti, I., Prati, F., & Torre, G. (1994). Stereochemical control in yeast reduction of fluorinated β-diketones. Tetrahedron, 50, 11995–12000. DOI: 10.1016/s0040-4020(01)89310-8. http://dx.doi.org/10.1016/S0040-4020(01)89310-810.1016/S0040-4020(01)89310-8Suche in Google Scholar
[15] Fujisawa, T., Sugimoto, T., & Shimizu, M. (1994). Highly stereocontrolled access to trifluoromethylbenzylic alcohols possessing p-substituents by the bakers’ yeast reduction. Tetrahedron: Asymmetry, 5, 1095–1098. DOI: 10.1016/0957-4166(94)80060-x. http://dx.doi.org/10.1016/0957-4166(94)80060-X10.1016/0957-4166(94)80060-XSuche in Google Scholar
[16] Hayakawa, R., Nozawa, K., Shimizu, M., & Fujisawa, T. (1998). Control of enantioselectivity in the bakers’ yeast reduction of β-keto ester derivatives in the presence of a sulfur compound. Tetrahedron Letters, 39, 67–70. DOI: 10.1016/s0040-4039(97)10490-7. http://dx.doi.org/10.1016/S0040-4039(97)10490-710.1016/S0040-4039(97)10490-7Suche in Google Scholar
[17] Heiss, C., Laivenieks, M., Zeikus, J. G., & Phillips, R. S. (2001). The stereospecificity of secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus is partially determined by active site water. Journal of the American Chemical Society, 123, 345–346. DOI: 10.1021/ja005575a. http://dx.doi.org/10.1021/ja005575a10.1021/ja005575aSuche in Google Scholar
[18] Hilgenkamp, R., & Zercher, C. K. (2001). Tandem chain extension-homoenolate formation: the formation of α-methylated-γ-keto esters. Organic Letters, 3, 3037–3040. DOI: 10.1021/ol016485t. http://dx.doi.org/10.1021/ol016485t10.1021/ol016485tSuche in Google Scholar
[19] Huang, D., Yan, M., Zhao, W. J., & Shen, Q. (2005). Efficient synthesis of γ-keto esters from enamines and EDA. Synthetic Communications, 35, 745–750. DOI: 10.1081/scc-200050387. http://dx.doi.org/10.1081/SCC-20005038710.1081/SCC-200050387Suche in Google Scholar
[20] Hudlicky, M. (1990). Oxidation in organic chemistry. Washington, DC, USA: American Chemical Society. Suche in Google Scholar
[21] Iqbal, M., Baloch, I. B., & Baloch, M. K. (2012). Synthesis and structural characterization of novel monoesters of succinic anhydride with aryl alcohols. Chemistry Journal, 2, 12–19. http://dx.doi.org/10.5923/j.chemistry.20120202.0310.5923/j.chemistry.20120202.03Suche in Google Scholar
[22] Itoh, N., Matsuda, M., Mabuchi, M., Dairi, T., & Wang, J. (2002). Chiral alcohol production by NADH-dependent phenylacetaldehyde reductase coupled with in situ regeneration of NADH. European Journal of Biochemistry, 269, 2394–2402. DOI: 10.1046/j.1432-1033.2002.02899.x. http://dx.doi.org/10.1046/j.1432-1033.2002.02899.x10.1046/j.1432-1033.2002.02899.xSuche in Google Scholar
[23] Izquierdo, J., Rodriguez, S., & Gonzalez, F. V. (2011). Regioselective ring opening and isomerization reactions of 3,4-epoxyesters catalyzed by boron trifluoride. Organic Letters, 13, 3856–3859. DOI: 10.1021/ol201378w. http://dx.doi.org/10.1021/ol201378w10.1021/ol201378wSuche in Google Scholar
[24] Kataoka, M., Yamamoto, K., Kawabata, H., Wada, M., Kita, K., Yanase, H., & Shimizu, S. (1999). Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes. Applied Microbiology and Biotechnology, 51, 486–490. DOI: 10.1007/s002530051421. http://dx.doi.org/10.1007/s00253005142110.1007/s002530051421Suche in Google Scholar
[25] Kashima, C., Shirahata, Y., & Tsukamoto, Y. (2001). Preparation of β-substituted γ-keto esters by the Grignard reaction on N-acylpyrazoles. Heterocycles, 54, 309–317. DOI: 10.3987/com-00-s(I)37. http://dx.doi.org/10.3987/COM-00-S(I)3710.3987/COM-00-S(I)37Suche in Google Scholar
[26] Kizaki, N., Yasohara, Y., Hasegawa, J., Wada, M., Kataoka, M., & Shimizu, S. (2001). Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Applied Microbiology and Biotechnology, 55, 590–595. DOI: 10.1007/s002530100599. http://dx.doi.org/10.1007/s00253010059910.1007/s002530100599Suche in Google Scholar
[27] Larock, R. C. (1999). Comprehensive organic transformations (2nd ed.). New York, NY, USA: Wiley-VCH. Suche in Google Scholar
[28] Nakamura, K., Yamanaka, R., Matsuda, T., & Harada, T. (2003). Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron: Asymmetry, 14, 2659–2681. DOI: 10.1016/s0957-4166(03)00526-3. http://dx.doi.org/10.1016/S0957-4166(03)00526-310.1016/S0957-4166(03)00526-3Suche in Google Scholar
[29] Poliakoff, M., Fitzpatrick, J. M., Farren, T. R., & Anastas, P. T. (2002). Green chemistry: science and politics of change. Science, 297, 807–810. DOI: 10.1126/science.297.5582.807. http://dx.doi.org/10.1126/science.297.5582.80710.1126/science.297.5582.807Suche in Google Scholar PubMed
[30] Roberts, J. D., & Caserio, M. C. (1964). Basic principles of organic chemistry. Menolo Park, CA, USA: W. A. Benjamin Inc. Suche in Google Scholar
[31] Ronsheim, M. D., Hilgenkamp, R. K., & Zercher, C. K. (2002). Formation of γ-keto esters from β-keto esters: Methyl 5,5-dimethyl-4-oxo-hexanoate. Organic Syntheses, 79, 146. Suche in Google Scholar
[32] Von Rudloff, E. (1958). Synthesis of some hexanediols. Canadian Journal of Chemistry, 36, 486–491. DOI: 10.1139/v58-069. http://dx.doi.org/10.1139/v58-06910.1139/v58-069Suche in Google Scholar
[33] Shafiee, A., Motamedi, H., & King, A. (1998). Purification, characterization and immobilization of an NADAPH-dependent enzyme involved in the chiral specific reduction of the keto ester M, an intermediate in the synthesis of an antiasthma drug, Montelukast, from Microbacterium campoquemadoensis (MB5614). Applied Microbiology and Biotechnology, 49, 709–717. DOI: 10.1007/s002530051236. http://dx.doi.org/10.1007/s00253005123610.1007/s002530051236Suche in Google Scholar
[34] Stájer, G., Csende, F., Bernáth, G., Sohár, P., & Szúnyog, J. (1994). Preparation and steric structure of 3(2H)-pyridazinones and 1,2-oxazin-6-ones fused with three-to sixmembered saturated carbocycles or norbornane skeleton. Monatshefte für Chemie/Chemical Monthly, 125, 933–944. DOI: 10.1007/bf00812708. http://dx.doi.org/10.1007/BF0081270810.1007/BF00812708Suche in Google Scholar
[35] Taylor, H. T. (1958). Preparation of unsaturated keto-acids from the interaction of ethylene and acid anhydrides. Journal of the Chemical Society (Resumed), 1958, 3922–3924. DOI: 10.1039/jr9580003922. 10.1039/jr9580003922Suche in Google Scholar
[36] Tojo, G., & Fernández, M. (2006). Oxidation of alcohols to aldehydes and ketones. New York, NY, USA: Springer. Suche in Google Scholar
[37] Wang, W., Xu, B., & Hammond, G. B. (2009). Efficient synthesis of γ-keto esters through neighboring carbonyl groupassisted regioselective hydration of 3-alkynoates. Journal of Organic Chemistry, 74, 1640–1643. DOI: 10.1021/jo802450n. http://dx.doi.org/10.1021/jo802450n10.1021/jo802450nSuche in Google Scholar PubMed
[38] Wehrli, P. A., & Chu, V. (1973). Novel synthesis of γ-keto esters. Journal of Organic Chemistry, 38, 3436–3436. DOI: 10.1021/jo00959a053. http://dx.doi.org/10.1021/jo00959a05310.1021/jo00959a053Suche in Google Scholar
[39] Wehrli, P. A., & Chu, V. (1978). γ-Ketoesters from aldehydes via diethyl acylsuccinates: Ethyl 4-oxohexanoate. Organic Syntheses, 58, 79. Suche in Google Scholar
[40] Williams, D.B.G., Blann, K., & Holzapfel, C.W. (2001). Aryl γ-ketoesters as precursors for γ-butyrolactones in samarium(II) iodide-mediated reactions. Synthetic Communications, 31, 203–209. DOI: 10.1081/scc-100000200. http://dx.doi.org/10.1081/SCC-10000020010.1081/SCC-100000200Suche in Google Scholar
[41] Williams, D. B. G., Blann, K., Caddy, J., & Holzapfel, C. W. (2002). Aryl γ-ketoesters as precursors for γ-butyrolactone dimers in samarium(II) iodide-mediated reactions. Synthetic Communications, 32, 3755–3762. DOI: 10.1081/scc-120015393. http://dx.doi.org/10.1081/SCC-12001539310.1081/SCC-120015393Suche in Google Scholar
[42] Yamamoto, H., Kimoto, N., Matsuyama, A., & Kobayashi, Y. (2002a). Purification and properties of a carbonyl reductase useful for production of ethyl (S)-4-chloro-3-hydroxybutanoate from Kluyveromyces lactis. Bioscience, Biotechnology, and Biochemistry, 66, 1775–1778. DOI: 10.1271/bbb.66.1775. http://dx.doi.org/10.1271/bbb.66.177510.1271/bbb.66.1775Suche in Google Scholar PubMed
[43] Yamamoto, H., Matsuyama, A., & Kobayashi, Y. (2002b). Synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate with recombinant Escherichia coli cells expressing (S)-specific secondary alcohol dehydrogenase. Bioscience, Biotechnology, and Biochemistry, 66, 481–483. DOI: 10.1271/bbb.66.481. http://dx.doi.org/10.1271/bbb.66.48110.1271/bbb.66.481Suche in Google Scholar PubMed
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Identification of carbohydrate isomers in flavonoid glycosides after hydrolysis by hydrophilic interaction chromatography
- Preparation of a new metallomicelle catalyst for the hydrolysis of bis(4-nitrophenyl) phosphate
- Synthesis and catalytic performance of MCM-41 modified with tetracarboxylphthalocyanine
- Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions
- Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers
- Effect of lentil and bean flours on rheological and baking properties of wheat dough
- Preparation, structural characterisation, and magnetic properties of [Cu(men)2][Cu2Cd2Cl2(CN)6] (men = N-methylethane-1,2-diamine)
- Structure and properties of 2-[(E)-2-(4-dipropylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium chloride
- Properties of water-soluble carboxymethyl chitosan film modified by hydrophobic poly(propylene glycol)
- Characterisation of hydroxyapatite surface modified by poly(ethylene glycol) and poly(hydroxyethyl methacrylate) grafting
- Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate
- An efficient method for the preparation of benzyl γ-ketohexanoates
- Micelle nano-reactors as mediators of water-insoluble ligand complexation with Cu(II) ions in aqueous medium
- Reactivity of base catalysed hydrolysis of 2-pyridinylmethylene-8-quinolinyl-Schiff base iron(II) iodide complexes: solvent effects
Artikel in diesem Heft
- Identification of carbohydrate isomers in flavonoid glycosides after hydrolysis by hydrophilic interaction chromatography
- Preparation of a new metallomicelle catalyst for the hydrolysis of bis(4-nitrophenyl) phosphate
- Synthesis and catalytic performance of MCM-41 modified with tetracarboxylphthalocyanine
- Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions
- Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers
- Effect of lentil and bean flours on rheological and baking properties of wheat dough
- Preparation, structural characterisation, and magnetic properties of [Cu(men)2][Cu2Cd2Cl2(CN)6] (men = N-methylethane-1,2-diamine)
- Structure and properties of 2-[(E)-2-(4-dipropylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium chloride
- Properties of water-soluble carboxymethyl chitosan film modified by hydrophobic poly(propylene glycol)
- Characterisation of hydroxyapatite surface modified by poly(ethylene glycol) and poly(hydroxyethyl methacrylate) grafting
- Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate
- An efficient method for the preparation of benzyl γ-ketohexanoates
- Micelle nano-reactors as mediators of water-insoluble ligand complexation with Cu(II) ions in aqueous medium
- Reactivity of base catalysed hydrolysis of 2-pyridinylmethylene-8-quinolinyl-Schiff base iron(II) iodide complexes: solvent effects