Home Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate
Article
Licensed
Unlicensed Requires Authentication

Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate

  • Ming-Qin Chang EMAIL logo , Feng Gao , Yang Li and Wen-Tao Gao
Published/Copyright: January 9, 2013
Become an author with De Gruyter Brill

Abstract

An efficient method has been developed for the synthesis of a novel β-keto ester-containing pyranoquinoline compound, i.e., ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate. The method entails a two-step synthesis. The first step involves the Williamson-type reaction of ethyl 2-bromomethyl-3-quinoline-3-carboxylate with ethyl hydroxyacetate in anhydrous benzene to afford the intermediate ethyl 2-[(2-ethoxy-2-oxoethoxy)methyl]quinoline-3-carboxylate. The second step includes the Dieckmann condensation reaction of the resulting intermediate in the presence of sodium ethoxide in anhydrous toluene to afford the desired pyranoquinoline containing β-keto ester moiety. Keto-enol tautomerism of the compound thus obtained was investigated by spectroscopic methods.

[1] Adepu, R., Rambabu, D., Prasad, B., Meda, C. L. T., Kandale, A., Krishna, G. R., Reddy, C. M., Chennuru, L. N., Parsa, K. V. L., & Pal, M. (2012). Novel thieno[2,3-d]pyrimidines: their design, synthesis, crystal structure analysis and pharmacological evaluation. Organic & Biomolecular Chemistry, 10, 5554–5569. DOI: 10.1039/c2ob25420d. http://dx.doi.org/10.1039/c2ob25420d10.1039/c2ob25420dSearch in Google Scholar

[2] Allegretti, P. E., Schiavoni, M. M., Di Loreto, H. E., Furlong, J. J. P., & Della Védova, C. O. (2001). Separation of keto-enol tautomers in β-ketoesters: a gas chromatography-mass spectrometric study. Journal of Molecular Structure, 560, 327–335. DOI: 10.1016/s0022-2860(00)00773-0. http://dx.doi.org/10.1016/S0022-2860(00)00773-010.1016/S0022-2860(00)00773-0Search in Google Scholar

[3] Balamurugan, K., Jeyachandran, V., Perumal, S., Manjashetty, T. H., Yogeeswari, P., & Sriram, D. (2010). A microwaveassisted, facile, regioselective Friedländer synthesis and antitubercular evaluation of 2,9-diaryl-2,3-dihydrothieno-[3,2-b]quinolines. European Journal of Medicinal Chemistry, 45, 682–688. DOI: 10.1016/j.ejmech.2009.11.011. http://dx.doi.org/10.1016/j.ejmech.2009.11.01110.1016/j.ejmech.2009.11.011Search in Google Scholar

[4] Bandgar, B. P., Pandit, S. S., & Sadavarte, V. S. (2001). Montmorillonite K-10 catalyzed synthesis of β-keto esters: condensation of ethyl diazoacetate with aldehydes under mild conditions. Green Chemistry, 3, 247–249. DOI: 10.1039/b104116a. http://dx.doi.org/10.1039/b104116a10.1039/b104116aSearch in Google Scholar

[5] Chandra, A., Singh, B., Khanna, R. S., & Singh, R. M. (2009). Copper-free palladium-catalyzed Sonogashira coupling-annulation: Efficient one-pot synthesis of functionalized pyrano [4,3-b]quinolines from 2-chloro-3-formylquinolines. The Journal of Organic Chemistry, 74, 5664–5666. DOI: 10.1021/jo900606j. http://dx.doi.org/10.1021/jo900606j10.1021/jo900606jSearch in Google Scholar

[6] Chen, I. S., Tsai, I. W., Teng, C. M., Chen, J. J., Chang, Y. L., Ko, F. N., Lu, M. C., & Pezzuto, J. M. (1997). Pyranoquinoline alkaloids from Zanthoxylum simulans. Phytochemistry, 46, 525–529. DOI: 10.1016/s0031-9422(97)00280-x. http://dx.doi.org/10.1016/S0031-9422(97)00280-X10.1016/S0031-9422(97)00280-XSearch in Google Scholar

[7] Cimanga, K., De Bruyne, T., Pieters, L., & Vlietinck, A. J. (1997). In vitro and in vivo antiplasmodial activity of cryptolepine and related alkaloids from Cryptolepis sanguinolenta. Journal of Natural Products, 60, 688–691. DOI: 10.1021/np9605246. http://dx.doi.org/10.1021/np960524610.1021/np9605246Search in Google Scholar PubMed

[8] Cui, H. F., Dong, K. Y., Nie, J., Zheng, Y., & Ma, J. A. (2010). Lewis acid-catalyzed one-pot sequential reaction for the synthesis of α-halogenated β-keto esters. Tetrahedron Letters, 51, 2374–2377. DOI: 10.1016/j.tetlet.2010.02.158. http://dx.doi.org/10.1016/j.tetlet.2010.02.15810.1016/j.tetlet.2010.02.158Search in Google Scholar

[9] Cui, L. Q., Dong, Z. L., Liu, K., & Zhang, C. (2011). Design, synthesis, structure, and dehydrogenation reactivity of a water-soluble o-iodoxybenzoic acid derivative bearing a trimethylammonium group. Organic Letters, 13, 6488–6491. DOI: 10.1021/ol202777h. http://dx.doi.org/10.1021/ol202777h10.1021/ol202777hSearch in Google Scholar PubMed

[10] Dolle, R. E., & Nelson, K. H., Jr. (1999). Comprehensive survey of combinatorial library synthesis: 1998. Journal of Combinatorial Chemistry, 1, 235–282. DOI: 10.1021/cc9900192. http://dx.doi.org/10.1021/cc990019210.1021/cc9900192Search in Google Scholar PubMed

[11] Dudley, M. E., Morshed, M. M., Brennan, C. L., Islam, M. S., Ahmad, M. S., Atuu, M. R., Branstetter, B., & Hossain, M. M. (2004). Acid-catalyzed reactions of aromatic aldehydes with ethyl diazoacetate: An investigation on the synthesis of 3-hydroxy-2-arylacrylic acid ethyl esters. The Journal of Organic Chemistry, 69, 7599–7608. DOI: 10.1021/jo0489418. http://dx.doi.org/10.1021/jo048941810.1021/jo0489418Search in Google Scholar

[12] Faber, K., Stuckler, H., & Kappe, T. (1984). Non-steroidal antiinflammatory agents. 1. Synthesis of 4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl alkanoic acids by the Wittig reaction of quinisatines. Journal of Heterocyclic Chemistry, 21, 1177–1181. DOI: 10.1002/jhet.5570210450. http://dx.doi.org/10.1002/jhet.557021045010.1002/jhet.5570210450Search in Google Scholar

[13] Gao, W., Zhang, C., Li, Y., & Jiang, Y. (2009). Effective preparation and fluorescent properties of novel naphthooxepinoquinolinones and naphthoacridinediones. Chinese Journal of Organic Chemistry, 29, 1423–1428. Search in Google Scholar

[14] Gao, W., Zhang, C., & Li, Y. (2010). A novel one-pot three-step synthesis of 2-(1-benzofuran-2-yl)quinoline-3-carboxylic acid derivatives. Journal of the Brazilian Chemical Society, 21, 806–812. DOI: 10.1590/s0103-50532010000500007. http://dx.doi.org/10.1590/S0103-5053201000050000710.1590/S0103-50532010000500007Search in Google Scholar

[15] Gao, W., Liu, J., Jiang, Y., & Li, Y. (2011). First synthesis of 2-(benzofuran-2-yl)-6,7-methylene dioxyquinoline-3-carboxylic acid derivatives. Beilstein Journal of Organic Chemistry, 7, 210–217. DOI: 10.3762/bjoc.7.28. http://dx.doi.org/10.3762/bjoc.7.2810.3762/bjoc.7.28Search in Google Scholar

[16] Gao, W., Jiang, Y., Li, Y., Li, F., & Yan, Y. (2012). A novel and facile synthesis of 2-(benzofuran-2-yl)benzo[h]quinoline-3-carboxylic acid derivatives. Chinese Journal of Chemistry, 30, 822–826. DOI: 10.1002/cjoc.201100389. http://dx.doi.org/10.1002/cjoc.20110038910.1002/cjoc.201100389Search in Google Scholar

[17] Ghosh, S., Nandakumar, M. V., Krautscheid, H., & Schneider, C. (2010). Copper-bipyridine-catalyzed enantioselective α-amination of β-keto esters. Tetrahedron Letters, 51, 1860–1862. DOI: 10.1016/j.tetlet.2010.02.007. http://dx.doi.org/10.1016/j.tetlet.2010.02.00710.1016/j.tetlet.2010.02.007Search in Google Scholar

[18] Gould, K. J., Manners, C. N., Payling, D. W., Suschitzky, J. L., & Wells, E. (1988). Predictive structure-activity relationships in a series of pyranoquinoline derivatives. A new primate model for the identification of antiallergic activity. Journal of Medicinal Chemistry, 31, 1445–1453. DOI: 10.1021/jm00402a033. http://dx.doi.org/10.1021/jm00402a03310.1021/jm00402a033Search in Google Scholar

[19] Hayashi, Y., Toyoshima, M., Gotoh, H., & Ishikawa, H. (2009). Diphenylprolinol silyl ether catalysis in an asymmetric formal carbo [3 + 3] cycloaddition reaction via a domino Michael/Knoevenagel condensation. Organic Letters, 11, 45–48. DOI: 10.1021/ol802330h. http://dx.doi.org/10.1021/ol802330h10.1021/ol802330hSearch in Google Scholar

[20] Iglesias, E. (2004). Application of organized microstructures to study keto-enol equilibrium of β-dicarbonyl compounds. Current Organic Chemistry, 8, 1–24. DOI: 10.2174/1385272043486124. http://dx.doi.org/10.2174/138527204348612410.2174/1385272043486124Search in Google Scholar

[21] Jios, J. L., & Duddeck, H. (2000). 17O NMR spectroscopy of 1-(2-hydroxyphenyl)-3-naphthylpropane-1,3-diones. Influences of keto-enol tautomerism and substituents. Magnetic Resonance in Chemistry, 38, 512–514. DOI: 10.1002/1097-458X(200007)38:7〈512::AID-MRC664〉3.0.CO;2-Z. http://dx.doi.org/10.1002/1097-458X(200007)38:7<512::AID-MRC664>3.0.CO;2-Z10.1002/1097-458X(200007)38:7<512::AID-MRC664>3.0.CO;2-ZSearch in Google Scholar

[22] Jonckers, T. H. M., van Miert, S., Cimanga, K., Bailly, C., Colson, P., De Pauw-Gillet, M. C., van den Heuvel, H., Claeys, M., Lemière, F., Esmans, E. L., Rozenski, J., Quirijnen, L., Maes, L., Dommisse, R., Lemière, G. L. F., Vlietinck, A., & Pieters, L. (2002). Synthesis, cytotoxicity, and antiplasmodial and antitrypanosomal activity of new Neocryptolepine derivatives. Journal of Medicinal Chemistry, 45, 3497–3508. DOI: 10.1021/jm011102i. http://dx.doi.org/10.1021/jm011102i10.1021/jm011102iSearch in Google Scholar PubMed

[23] Kalita, P. K., Baruah, B., & Bhuyan, P. J. (2006). Synthesis of novel pyrano[2,3-b]quinolines from simple acetanilides via intramolecular 1,3-dipolar cycloaddition. Tetrahedron Letters, 47, 7779–7782. DOI: 10.1016/j.tetlet.2006.08.086. http://dx.doi.org/10.1016/j.tetlet.2006.08.08610.1016/j.tetlet.2006.08.086Search in Google Scholar

[24] Kuninobu, Y., Morita, J., Nishi, M., Kawata, A., & Takai, K. (2009). Rhenium-catalyzed formation of bicyclo[3.3.1]nonene frameworks by a reaction of cyclic β-keto esters with terminal alkynes. Organic Letters, 11, 2535–2537. DOI: 10.1021/ol900772h. http://dx.doi.org/10.1021/ol900772h10.1021/ol900772hSearch in Google Scholar PubMed

[25] Little, A., & Porco, J. A., Jr. (2012). Total syntheses of Graphisin A and Sydowinin B. Organic Letters, 14, 2862–2865. DOI: 10.1021/ol301107m. http://dx.doi.org/10.1021/ol301107m10.1021/ol301107mSearch in Google Scholar PubMed PubMed Central

[26] Li, Y., Zhang, C., Sun, M., & Gao, W. (2009). Facile synthesis of 10-tert-butyl[1]benzoxepino[3,4-b][1,3]-dioxolo[4,5-g]quinolin-12(6H)-ones. Journal of Heterocyclic Chemistry, 46, 1190–1194. DOI: 10.1002/jhet.203. http://dx.doi.org/10.1002/jhet.20310.1002/jhet.203Search in Google Scholar

[27] Liao, M., & Wang, J. (2006). CuSO4-catalyzed diazo decomposition in water: a practical synthesis of β-keto esters. Tetrahedron Letters, 47, 8859–8861. DOI: 10.1016/j.tetlet.2006.10.059. http://dx.doi.org/10.1016/j.tetlet.2006.10.05910.1016/j.tetlet.2006.10.059Search in Google Scholar

[28] Magesh, C. J., Makesh, S. V., & Perumal, P. T. (2004). Highly diastereoselective inverse electron demand (IED) Diels-Alder reaction mediated by chiral salen-AlCl complex: the first, target-oriented synthesis of pyranoquinolines as potential antibacterial agents. Bioorganic & Medicinal Chemistry Letters, 14, 2035–2040. DOI: 10.1016/j.bmcl.2004.02.057. http://dx.doi.org/10.1016/j.bmcl.2004.02.05710.1016/j.bmcl.2004.02.057Search in Google Scholar PubMed

[29] Majumdar, K. C., Taher, A., & Ponra, S. (2010). Unusual product from condensative cyclization: Pyrano[3,2-f]quinolin-3,10-diones from 6-amino-5-[(trimethylsilyl)ethynyl]-2H-chromen-2-one and aryl aldehydes. Synlett, 2010, 735–740. DOI: 10.1055/s-0029-1219378. http://dx.doi.org/10.1055/s-0029-121937810.1055/s-0029-1219378Search in Google Scholar

[30] Matsuya, Y., Katayanagi, H., Ohdaira, T., Wei, Z. L., Kondo, T., & Nemoto, H. (2009). Novel 3,4-diazabenzotropone compounds (2,3-benzodiazepin-5-ones): synthesis, unique reactivity, and biological evaluation. Organic Letters, 11, 1361–1364. DOI: 10.1021/ol900154x. http://dx.doi.org/10.1021/ol900154x10.1021/ol900154xSearch in Google Scholar PubMed

[31] Mohmed, E. A. (1994). Some new quinolones of expected pharmaceutical importance derived from 1,2-dihydro-4-hydroxy-1-methyl-2-oxoquinoline-3-carbaldehyde. Chemical Papers, 48, 261–267. Search in Google Scholar

[32] Mordant, C., Reymond, S., Tone, H., Lavergne, D., Touati, R., Ben Hassine, B., Ratovelomanana-Vidal, V., & Genet, J. P. (2007). Total synthesis of dolastatin 10 through ruthenium-catalyzed asymmetric hydrogenations. Tetrahedron, 63, 6115–6123. DOI: 10.1016/j.tet.2007.03.036. http://dx.doi.org/10.1016/j.tet.2007.03.03610.1016/j.tet.2007.03.036Search in Google Scholar

[33] Murata, H., Ishitani, H., & Iwamoto, M. (2008). Selective synthesis of α-substituted β-keto esters from aldehydes and diazoesters on mesoporous silica catalysts. Tetrahedron Letters, 49, 4788–4791. DOI: 10.1016/j.tetlet.2008.05.077. http://dx.doi.org/10.1016/j.tetlet.2008.05.07710.1016/j.tetlet.2008.05.077Search in Google Scholar

[34] Nawrot-Modranka, J., Nawrot, E., & Graczyk, J. (2006). In vivo antitumor, in vitro antibacterial activity and alkylating properties of phosphorohydrazine derivatives of coumarin and chromone. European Journal of Medicinal Chemistry, 41, 1301–1309. DOI: 10.1016/j.ejmech.2006.06.004. http://dx.doi.org/10.1016/j.ejmech.2006.06.00410.1016/j.ejmech.2006.06.004Search in Google Scholar

[35] Padwa, A., & Au, A. (1976). Involvement of enol tautomers in the photoisomerization of 3-substituted isochromanones. Journal of the American Chemical Society, 98, 5581–5590. DOI: 10.1021/ja00434a029. http://dx.doi.org/10.1021/ja00434a02910.1021/ja00434a029Search in Google Scholar

[36] Phun, L. H., Patil, D. V., Cavitt, M. A., & France, S. (2011). A catalytic homo-Nazarov cyclization protocol for the synthesis of heteroaromatic ring-fused cyclohexanones. Organic Letters, 13, 1952–1955. DOI: 10.1021/ol200305n. http://dx.doi.org/10.1021/ol200305n10.1021/ol200305nSearch in Google Scholar

[37] Ramesh, M., Mohan, P. S., & Shanmugam, P. (1984). A convenient synthesis of flindersine, atanine and their analogues. Tetrahedron, 40, 4041–4049. DOI: 10.1016/0040-4020(84)85084-x. http://dx.doi.org/10.1016/0040-4020(84)85084-X10.1016/0040-4020(84)85084-XSearch in Google Scholar

[38] Singh, M. K., Chandra, A., Singh, B., & Singh, R. M. (2007). Synthesis of diastereomeric 2,4-disubstituted pyrano[2,3-b]quinolines from 3-formyl-2-quinolones through O-C bond formation via intramolecular electrophilic cyclization. Tetrahedron Letters, 48, 5987–5990. DOI: 10.1016/j.tetlet.2007.06.127. http://dx.doi.org/10.1016/j.tetlet.2007.06.12710.1016/j.tetlet.2007.06.127Search in Google Scholar

[39] Singh, B., Chandra, A., Singh, S., & Singh, R. M. (2011). Basefree NIS promoted electrophilic cyclization of alkynes: an efficient synthesis of iodo substituted pyrano[4,3-b]quinolines. Tetrahedron, 67, 505–511. DOI: 10.1016/j.tet.2010.10.081. http://dx.doi.org/10.1016/j.tet.2010.10.08110.1016/j.tet.2010.10.081Search in Google Scholar

[40] Temperini, C., Cecchi, A., Scozzafava, A., & Supuran, C. T. (2009). Carbonic anhydrase inhibitors. Comparison of Chlorthalidone and Indapamide X-ray crystal structures in adducts with isozyme II: When three water molecules and the keto-enol tautomerism make the difference. Journal of Medicinal Chemistry, 52, 322–328. DOI: 10.1021/jm801386n. http://dx.doi.org/10.1021/jm801386n10.1021/jm801386nSearch in Google Scholar PubMed

[41] Witherup, K.M., Ransom, R. W., Graham, A. C., Bernard, A. M., Salvatore, M. J., Lumma, W. C., Anderson, P. S., Pitzenberger, S. M., & Varga, S. L. (1995). Martinelline and martinellic acid, novel G-protein linked receptor antagonists from the tropical plant Martinella iquitosensis (Bignoniaceae). Journal of the American Chemical Society, 117, 6682–6685. DOI: 10.1021/ja00130a005. http://dx.doi.org/10.1021/ja00130a00510.1021/ja00130a005Search in Google Scholar

[42] Wu, L., & Yang, D. (2009). Synthesis, characterization and single crystal structure of ethyl 2-(substituted-piperazin-1-ylmethyl)-quinoline-3-carboxylate derivatives. Chinese Journal of Organic Chemistry, 29, 1122–1128. Search in Google Scholar

[43] Wu, J., Chen, W., Hu, M., Zou, H., & Yu, Y. (2010). Synthesis of polysubstituted 5-aminooxazoles from α-diazocarbonyl esters and α-isocyanoacetamides. Organic Letters, 12, 616–618. DOI: 10.1021/ol902850a. http://dx.doi.org/10.1021/ol902850a10.1021/ol902850aSearch in Google Scholar PubMed

[44] Xue, S., Liu, Y. K., Li, L. Z., & Guo, Q. X. (2005). Zinc-mediated ring-expansion and chain-extension reactions of β-keto esters. The Journal of Organic Chemistry, 70, 8245–8247. DOI: 10.1021/jo0512498. http://dx.doi.org/10.1021/jo051249810.1021/jo0512498Search in Google Scholar

[45] Yadav, J. S., Subba Reddy, B. V., Eeshwaraiah, B., & Reddy, P. N. (2005). Niobium(V) chloride-catalyzed C-H insertion reactions of α-diazoesters: synthesis of β-keto esters. Tetrahedron, 61, 875–878. DOI: 10.1016/j.tet.2004.11.027. http://dx.doi.org/10.1016/j.tet.2004.11.02710.1016/j.tet.2004.11.027Search in Google Scholar

[46] Yamada, N., Kadowaki, S., Takahashi, K., & Umezu, K. (1992). MY-1250, a major metabolite of the anti-allergic drug repirinast, induces phosphorylation of a 78-kDa protein in rat mast cells. Biochemical Pharmacology, 44, 1211–1213. DOI: 10.1016/0006-2952(92)90387-x. http://dx.doi.org/10.1016/0006-2952(92)90387-X10.1016/0006-2952(92)90387-XSearch in Google Scholar

[47] Zhang, Q., Zhang, Z., Yan, Z., Liu, Q., & Wang, T. (2007). A new efficient synthesis of pyranoquinolines from 1-acetyl N-arylcyclopentanecarboxamides. Organic Letters, 9, 3651–3653. DOI: 10.1021/ol701536q. http://dx.doi.org/10.1021/ol701536q10.1021/ol701536qSearch in Google Scholar PubMed

Published Online: 2013-1-9
Published in Print: 2013-4-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Identification of carbohydrate isomers in flavonoid glycosides after hydrolysis by hydrophilic interaction chromatography
  2. Preparation of a new metallomicelle catalyst for the hydrolysis of bis(4-nitrophenyl) phosphate
  3. Synthesis and catalytic performance of MCM-41 modified with tetracarboxylphthalocyanine
  4. Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions
  5. Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers
  6. Effect of lentil and bean flours on rheological and baking properties of wheat dough
  7. Preparation, structural characterisation, and magnetic properties of [Cu(men)2][Cu2Cd2Cl2(CN)6] (men = N-methylethane-1,2-diamine)
  8. Structure and properties of 2-[(E)-2-(4-dipropylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium chloride
  9. Properties of water-soluble carboxymethyl chitosan film modified by hydrophobic poly(propylene glycol)
  10. Characterisation of hydroxyapatite surface modified by poly(ethylene glycol) and poly(hydroxyethyl methacrylate) grafting
  11. Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate
  12. An efficient method for the preparation of benzyl γ-ketohexanoates
  13. Micelle nano-reactors as mediators of water-insoluble ligand complexation with Cu(II) ions in aqueous medium
  14. Reactivity of base catalysed hydrolysis of 2-pyridinylmethylene-8-quinolinyl-Schiff base iron(II) iodide complexes: solvent effects
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0276-6/html?lang=en
Scroll to top button