Abstract
Results of an experimental study on the rate of attrition of lime catalyst/sorbent in a high-temperature, turbulent fluidized bed with quartz sand are presented. Batch measurements were conducted at 850°C in an electrically heated gasification reactor of the inner diameter of 5.1 cm with three samples of high-grade dolomitic lime of the particle size 450 μm, 715 μm, and 1060 μm, respectively. In addition to the influence of the particle size, the effect of operating (elapsed) time was investigated at different superficial gas velocities. Assuming that the attrition rate decreases exponentially with time, a simple mechanistic model, enabling the correlation of the measured experimental data, was developed. The course of the lime particles attrition is described as a function of the elapsed time, excess gas velocity, and particle size. The presented approach and the results might be applicable for the attrition of high-grade dolomitic lime, particularly in fluidized gasification of biomass.
[1] Abu El-Rub, Z., Bramer, E. A., & Brem, G. (2004). Review of catalysts for tar elimination in biomass gasification processes. Industrial & Engineering Chemistry Research, 43, 6911–6919. DOI: 10.1021/ie0498403. http://dx.doi.org/10.1021/ie049840310.1021/ie0498403Suche in Google Scholar
[2] Ayazi Shamlou, P., Liu, Z., & Yates, J. G. (1990). Hydrodynamic influences on particle breakage in fluidized beds. Chemical Engineering Science, 45, 809–817. DOI: 10.1016/0009-2509(90)85004-w. http://dx.doi.org/10.1016/0009-2509(90)85004-W10.1016/0009-2509(90)85004-WSuche in Google Scholar
[3] Boynton, R. S. (1980). Chemistry and technology of lime and limestone (2nd ed.). New York, NY, USA: Wiley. Suche in Google Scholar
[4] Chen, Z. X., Grace, J. R., & Lim, C. J. (2008). Limestone particle attrition and size distribution in a small circulating fluidized bed. Fuel, 87, 1360–1371. DOI:10.1016/j.fuel.2007.06.012. http://dx.doi.org/10.1016/j.fuel.2007.06.01210.1016/j.fuel.2007.06.012Suche in Google Scholar
[5] Cook, J. L., Khang S. J., Lee, S. K., & Keener, T. C. (1996). Attrition and changes in particle size distribution of lime sorbents in a circulating fluidized bed absorber. Powder Technology, 89, 1–8. DOI: 10.1016/s0032-5910(96)03115-4. http://dx.doi.org/10.1016/S0032-5910(96)03115-410.1016/S0032-5910(96)03115-4Suche in Google Scholar
[6] Corella, J., Toledo, J. M., & Aznar, M. P. (2002). Improving the modeling of the kinetics of the catalytic tar elimination in biomass gasification. Industrial & Engineering Chemistry Research, 41, 3351–3356. DOI: 10.1021/ie0110336. http://dx.doi.org/10.1021/ie011033610.1021/ie0110336Suche in Google Scholar
[7] Di Benedetto, A., & Salatino, P. (1998). Modeling attrition of limestone during calcination and sulfation in a fluidized bed reactor. Powder Technology 95, 119–128. DOI: 10.1016/s0032-5910(97)03327-5. http://dx.doi.org/10.1016/S0032-5910(97)03327-510.1016/S0032-5910(97)03327-5Suche in Google Scholar
[8] Gil, J., Caballero, M. A., Martin, J. A., Aznar, M. P., & Corella, J. (1999). Biomass gasification with air in a fluidized bed: Effect of the in-bed use of dolomite under different operation conditions. Industrial & Engineering Chemistry Research, 38, 4226–4235. DOI: 10.1021/ie980802r. http://dx.doi.org/10.1021/ie980802r10.1021/ie980802rSuche in Google Scholar
[9] Hartman, M., & Svoboda, K. (1986). Predicting the effect of operating temperature on the minimum fluidization velocity. Industrial & Engineering Chemistry Process Design and Development, 25, 649–654. DOI: 10.1021/i200034a009. http://dx.doi.org/10.1021/i200034a00910.1021/i200034a009Suche in Google Scholar
[10] Hartman, M., Svoboda, K., & Trnka, O. (1991). Unsteady-state retention of sulfur dioxide in a fluidized bed with continual feeding of lime and limestone. Industrial & Engineering Chemistry Research, 30, 1855–1864. DOI: 10.1021/ie00056a 027. http://dx.doi.org/10.1021/ie00056a027Suche in Google Scholar
[11] Hartman, M., & Martinovsky, A. (1992). Thermal stability of the magnesian and calcareous compounds for desulfurization processes. Chemical Engineering Communications, 111, 149–160. DOI: 10.1080/00986449208935985. http://dx.doi.org/10.1080/0098644920893598510.1080/00986449208935985Suche in Google Scholar
[12] Hartman, M., & Coughlin, R. W. (1993). On the incipient fluidized state of solid particles. Collection of Czechoslovak Chemical Communications, 58, 1213–1241. DOI: 10.1135/cccc19931213. http://dx.doi.org/10.1135/cccc1993121310.1135/cccc19931213Suche in Google Scholar
[13] Hartman, M., & Yates, J. G. (1993). Free-fall of solid particles through fluids. Collection of Czechoslovak Chemical Communications, 58, 961–982. DOI: 10.1135/cccc19930961. http://dx.doi.org/10.1135/cccc1993096110.1135/cccc19930961Suche in Google Scholar
[14] Hartman, M., Trnka, O., & Svoboda, K. (1994a). Free settling of nonspherical particles. Industrial & Engineering Chemistry Research, 33, 1979–1983. DOI: 10.1021/ie00032a012. http://dx.doi.org/10.1021/ie00032a01210.1021/ie00032a012Suche in Google Scholar
[15] Hartman, M., Trnka, O., & Vesely, V. (1994b). Thermal dehydration of magnesium hydroxide and sintering of nascent magnesium oxide. AIChE Journal, 40, 536–542. DOI: 10.1002/aic.690400314. http://dx.doi.org/10.1002/aic.69040031410.1002/aic.690400314Suche in Google Scholar
[16] Hartman, M., Trnka, O., & Svoboda, K. (2000). Fluidization characteristics of dolomite and calcined dolomite particles. Chemical Engineering Science, 55, 6269–6274. DOI: 10.1016/S0009-2509(00)00409-7. http://dx.doi.org/10.1016/S0009-2509(00)00409-710.1016/S0009-2509(00)00409-7Suche in Google Scholar
[17] Hartman, M., Trnka, O., & Pohořelý, M. (2007). Minimum and terminal velocities in fluidization of particulate ceramsite at ambient and elevated temperature. Industrial & Engineering Chemistry Research, 46, 7260–7266. DOI: 10.1021/ie0615685. http://dx.doi.org/10.1021/ie061568510.1021/ie0615685Suche in Google Scholar
[18] Hartman, M., Trnka, O., & Svoboda, K. (2009). Use of presure fluctuations to determine online the regime of gas-solids suspensions from incipient fluidization to transport. Industrial & Engineering Chemistry Research, 48, 6830–6835. DOI: 10.1021/ie900055x. http://dx.doi.org/10.1021/ie900055x10.1021/ie900055xSuche in Google Scholar
[19] Hartman, M., Trnka, O., Pohořelý, M., & Svoboda, K. (2010). High-temperature reaction in the freeboard region above a bubbling fluidized bed. Industrial & Engineering Chemistry Research, 49, 2672–2680. DOI: 10.1021/ie901760f. http://dx.doi.org/10.1021/ie901760f10.1021/ie901760fSuche in Google Scholar
[20] Higman, C., & van der Burgt, M. (2008). Gasification (2nd ed.). Amsterdam, The Netherlands: Elsevier. Suche in Google Scholar
[21] Knoef, H. A.M. (Ed.) (2005). Handbook of biomass gasification. Enschede, The Netherlands: BTG biomass technology group. Suche in Google Scholar
[22] Lee, S. K., Jiang, X. L., Keener, T. C., & Khang, S. J. (1993). Attrition of lime sorbents during fluidization in a circulating fluidized bed absorber. Industrial & Engineering Chemistry Research, 32, 2758–2766. DOI: 10.1021/ie00023a044. http://dx.doi.org/10.1021/ie00023a04410.1021/ie00023a044Suche in Google Scholar
[23] Montagnaro, F., Salatino, P., & Scala, F. (2010). The influence of temperature on limestone sulfation and attrition under fluidized bed combustion conditions. Experimental Thermal and Fluid Science, 34, 352–358. DOI: 10.1016/j.expthermflusci.2009.10.013. http://dx.doi.org/10.1016/j.expthermflusci.2009.10.01310.1016/j.expthermflusci.2009.10.013Suche in Google Scholar
[24] Oates, J. A. H. (1998). Lime and limestone: Chemistry and technology, production and uses. Weinheim, Germany: Wiley-VCH. 10.1002/9783527612024Suche in Google Scholar
[25] Pohořelý, M., Svoboda, K., & Hartman, M. (2004). Feeding small quantities of particulate solids. Powder Technology, 142, 1–6. DOI: 10.1016/j.powtec.2004.03.005. http://dx.doi.org/10.1016/j.powtec.2004.03.00510.1016/j.powtec.2004.03.005Suche in Google Scholar
[26] Saastamoinen, J. J. (2007). Particle-size optimization for SO2 capture by limestone in a circulating fluidized bed. Industrial & Engineering Chemistry Research, 46, 7308–7316. DOI: 10.1021/ie070567p. http://dx.doi.org/10.1021/ie070567p10.1021/ie070567pSuche in Google Scholar
[27] Scala, F., Cammarota, A., Chirone, R., & Salatino, P. (1997). Comminution of limestone during batch fluidized-bed calcination and sulfation. AIChE Journal, 43, 363–373. DOI: 10.1002/aic.690430210. http://dx.doi.org/10.1002/aic.69043021010.1002/aic.690430210Suche in Google Scholar
[28] Scala, F., & Salatino, P. (2003). Dolomite attrition during fluidized-bed calcination and sulfation. Combustion Science and Technology, 175, 2201–2216. DOI: 10.1080/714923284. http://dx.doi.org/10.1080/71492328410.1080/714923284Suche in Google Scholar
[29] Scala, F., Montagnaro, F., & Salatino, P. (2007). Attrition of limestone by impact loading in fluidized beds. Energy & Fuels, 21, 2566–2572. DOI: 10.1021/ef0700580. http://dx.doi.org/10.1021/ef070058010.1021/ef0700580Suche in Google Scholar
[30] Scala, F., & Salatino, P. (2010). Limestone fragmentation and attrition during fluidized bed oxyfiring. Fuel, 89, 827–832. DOI: 10.1016/j.fuel.2009.03.024. http://dx.doi.org/10.1016/j.fuel.2009.03.02410.1016/j.fuel.2009.03.024Suche in Google Scholar
[31] Sutton, D., Kelleher, B., & Ross, J. R. H. (2001). Review of literature on catalysts for biomass gasification. Fuel Processing Technology, 73, 155–173. DOI: 10.1016/s0378-3820(01)00208-9. http://dx.doi.org/10.1016/S0378-3820(01)00208-910.1016/S0378-3820(01)00208-9Suche in Google Scholar
[32] Yao, X., Zhang, H., Yang, H. R., Liu, Q., Wang, J. W., & Yue, G. X. (2010). An experimental study on the primary fragmentation and attrition of limestones in a fluidized bed. Fuel Processing Technology, 91, 1119–1124. DOI: 10.1016/j.fuproc.2010.03.025. http://dx.doi.org/10.1016/j.fuproc.2010.03.02510.1016/j.fuproc.2010.03.025Suche in Google Scholar
[33] Zheng, J., Yates, J. G., & Rowe, P. N. (1982). A model for desulphurization with limestone in a fluidised coal combustor. Chemical Engineering Science, 37, 167–174. DOI: 10.1016/0009-2509(82)80151-6. http://dx.doi.org/10.1016/0009-2509(82)80151-610.1016/0009-2509(82)80151-6Suche in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Characterisation of VOC composition of Slovak monofloral honeys by GC×GC-TOF-MS
- Combustion-derived CdO nanopowder as a heterogeneous basic catalyst for efficient synthesis of sulfonamides from aromatic amines using p-toluenesulfonyl chloride
- Molybdate sulfonic acid: preparation, characterization, and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis
- Enantioselective extraction of hydrophilic 2-chloromandelic acid enantiomers by hydroxypropyl-β-cyclodextrin: experiments and modeling
- Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures
- Improvement of aquatic pollutant partition coefficient correlations using 1D molecular descriptors — chlorobenzene case study
- Mercury characterisation in urban particulate matter
- Thermal decomposition of lanthanide(III) complexes of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand
- Effect of hyamine on electrochemical behaviour of brass alloy in HNO3 solution
- Calorimetric determination of the effect of additives on cement hydration process
- Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads
- Facile synthesis of 3-substituted quinazoline-2,4-dione and 2,3-di-substituted quinazolinone derivatives
- Virtual screening of imidazole analogs as potential hepatitis C virus NS5B polymerase inhibitors
- A new phenanthroindolizidine alkaloid from Tylophora indica
Artikel in diesem Heft
- Characterisation of VOC composition of Slovak monofloral honeys by GC×GC-TOF-MS
- Combustion-derived CdO nanopowder as a heterogeneous basic catalyst for efficient synthesis of sulfonamides from aromatic amines using p-toluenesulfonyl chloride
- Molybdate sulfonic acid: preparation, characterization, and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis
- Enantioselective extraction of hydrophilic 2-chloromandelic acid enantiomers by hydroxypropyl-β-cyclodextrin: experiments and modeling
- Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures
- Improvement of aquatic pollutant partition coefficient correlations using 1D molecular descriptors — chlorobenzene case study
- Mercury characterisation in urban particulate matter
- Thermal decomposition of lanthanide(III) complexes of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand
- Effect of hyamine on electrochemical behaviour of brass alloy in HNO3 solution
- Calorimetric determination of the effect of additives on cement hydration process
- Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads
- Facile synthesis of 3-substituted quinazoline-2,4-dione and 2,3-di-substituted quinazolinone derivatives
- Virtual screening of imidazole analogs as potential hepatitis C virus NS5B polymerase inhibitors
- A new phenanthroindolizidine alkaloid from Tylophora indica