Abstract
Hepatitis C virus (HCV) infection is a global health threat and current therapies warrant the need for novel HCV therapies. Several synthetic analogs targeting HCV serine protease and RNA-dependent RNA polymerase have entered clinical development. To investigate the novel HCV NS5B RdRp polymerase inhibitor, screening of a designed data set consisting of benzimidazole analogs by the FlexX docking approach was performed. Binding interactions at the active sites (PDB ID: 2DXS) were evaluated leading to the rationalization of further synthesis and evaluation procedures.
[1] Anilkumar, G. N., Selyutin, O., Rosenblum, S. B., Zeng, Q. B., Jiang, Y. H., Chan, T. Y., Pu, H. Y., Wang, L., Bennett, F., Chen, K. X., Lesburg, C. A., Duca, J. S., Gavalas, S., Huang, Y. H., Pinto, P., Sannigrahi, M., Velazquez, F., Venkataraman, S., Vilbubhan, B., Agrawal, S., Ferrari, E., Jiang, C. K., Huang, H. C., Shih, N. Y., Njoroge, F. G., & Kozlowski, J. A. (2012). II. Novel HCV NS5B polymerase inhibitors: Discovery of indole C2 aryl sulfonamides. Bioorganic & Medicinal Chemistry Letters, 22, 713–717. DOI: 10.1016/j.bmcl.2011.10.041. http://dx.doi.org/10.1016/j.bmcl.2011.10.04110.1016/j.bmcl.2011.10.041Suche in Google Scholar PubMed
[2] Beaulieu, P. L. (2007). Non-nucleoside inhibitors of the HCV NS5B polymerase: progress in the discovery and development of novel agents for the treatment of HCV infections. Current Opinion in Investigational Drugs, 8, 614–634. Suche in Google Scholar
[3] Beaulieu, P. L., Bös, M., Bousquet, Y., DeRoy, P., Fazal, G., Gauthier, J., Gillard, J., Goulet, S., McKercher, G., Poupart, M. A., Valois, S., & Kukolj, G. (2004). Non-nucleoside inhibitors of the hepatitis C virus NS5B polymerase: discovery of benzimidazole 5-carboxylic amide derivatives with low-nanomolar potency. Bioorganic & Medicinal Chemistry Letters, 14, 967–971. DOI: 10.1016/j.bmcl.2003.12.032. http://dx.doi.org/10.1016/j.bmcl.2003.12.03210.1016/j.bmcl.2003.12.032Suche in Google Scholar PubMed
[4] Behrens, S. E., Tomei, L., & De Francesco, R. (1996). Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. The EMBO Journal, 15, 12–22. 10.1002/j.1460-2075.1996.tb00329.xSuche in Google Scholar
[5] BioSolveIT (2012). FlexX [computer software]. Sankt Augustin, Germany: BioSolveIT. www.biosolveit.de Suche in Google Scholar
[6] Biswal, B. K., Cherney, M. M., Wang, M., Chan, L., Yannopoulos, C. G., Bilimoria, D., Nicolas, O., Bedard, J., & James, M. N. (2005). Crystal structures of the RNA-dependent RNA polymerase genotype 2a of hepatitis C virus reveal two conformations and suggest mechanisms of inhibition by nonnucleoside inhibitors. The Journal of Biological Chemistry, 280, 18202–18210. DOI: 10.1074/jbc.m413410200. http://dx.doi.org/10.1074/jbc.M41341020010.1074/jbc.M413410200Suche in Google Scholar PubMed
[7] Böhm, H. J. (1992). The computer program LUDI: A new method for the de novo design of enzyme inhibitors. Journal of Computer-Aided Molecular Design, 6, 61–78. DOI: 10.1007/bf00124387. http://dx.doi.org/10.1007/BF0012438710.1007/BF00124387Suche in Google Scholar PubMed
[8] Bressanelli, S., Tomei, L., Rey, F. A., & De Francesco, R. (2002). Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. Journal of Virology, 76, 3482–3492. DOI: 10.1128/jvi.76.7.3482-3492.2002. http://dx.doi.org/10.1128/JVI.76.7.3482-3492.200210.1128/JVI.76.7.3482-3492.2002Suche in Google Scholar PubMed PubMed Central
[9] Chan, L., Reddy, T. J., Proulx, M., Das, S. K., Pereira, O., Wang, W. Y., Siddiqui, A., Yannopoulos, C. G., Poisson, C., Turcotte, N., Drouin, A., Alaoui-Ismaili, M. H., Bethell, R., Hamel, M., L’Heureux, L., Bilimoria, D., & Nguyen-Ba, N. (2003). Identification of N,N-disubstituted phenylalanines as a novel class of inhibitors of hepatitis C NS5B polymerase. Journal of Medicinal Chemistry, 46, 1283–1285. DOI: 10.1021/jm0340400. http://dx.doi.org/10.1021/jm034040010.1021/jm0340400Suche in Google Scholar PubMed
[10] Chan, L., Pereira, O., Reddy, T. J., Das, S. K., Poisson, C., Courchesne, M., Proulx, M., Siddiqui, A., Yannopoulos, C. G., Nguyen-Ba, N., Roy, C., Nasturica, D., Moinet, C., Bethell, R., Hamel, M., L’Heureux, L., David, M., Nicolas, O., Courtemanche-Asselin, P., Brunette, S., Bilimoria, D., & Bedard, J. (2004). Discovery of thiophene-2-carboxylic acids as potent inhibitors of HCV NS5B polymerase and HCV subgenomic RNA replication. Part 2: Tertiary amides. Bioorganic & Medicinal Chemistry Letters, 14, 797–800. DOI: 10.1016/j.bmcl.2003.10.068. http://dx.doi.org/10.1016/j.bmcl.2003.10.06810.1016/j.bmcl.2003.10.068Suche in Google Scholar PubMed
[11] Di Marco, S., Volpari, C., Tomei, L., Altamura, S., Harper, S., Narjes, F., Koch, U., Rowley, M., De Francesco, R., Migliaccio, G., & Carfí, A. (2005). Interdomain communication in hepatitis C virus polymerase abolished by small molecule inhibitors bound to a novel allosteric site. The Journal of Biological Chemistry, 280, 29765–29770. DOI: 10.1074/jbc.m505423200. http://dx.doi.org/10.1074/jbc.M50542320010.1074/jbc.M505423200Suche in Google Scholar PubMed
[12] Doman, T. N., McGovern, S. L., Witherbee, B. J., Kasten, T. P., Kurumbail, R., Stallings, W. C., Connolly, D. T., & Shoichet, B. K. (2002). Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. Journal of Medicinal Chemistry, 45, 2213–2221. DOI: 10.1021/jm010548w. http://dx.doi.org/10.1021/jm010548w10.1021/jm010548wSuche in Google Scholar PubMed
[13] Gopalsamy, A., Lim, K. T., Ciszewski, G., Park, K., Ellingboe, J. W., Bloom, J., Insaf, S., Upeslacis, J., Mansour, T. S., Krishnamurthy, G., Damarla, M., Pyatski, Y., Ho, D., Howe, A. Y. M., Orlowski, M., Feld, B., & O’Connell, J. (2004). Discovery of pyrano[3,4-b]indoles as potent and selective HCV NS5B polymerase inhibitors. Journal of Medicinal Chemistry, 47, 6603–6608. DOI: 10.1021/jm0401255. http://dx.doi.org/10.1021/jm040125510.1021/jm0401255Suche in Google Scholar PubMed
[14] Guido, R. V. C., Oliva, G., & Andricopulo, A. D. (2008). Virtual screening and its integration with modern drug design technologies. Current Medicinal Chemistry, 15, 37–46. DOI: 10.2174/092986708783330683. http://dx.doi.org/10.2174/09298670878333068310.2174/092986708783330683Suche in Google Scholar PubMed
[15] Gupta, S. P., Samanta, S., & Patil, V. M. (2010). A 3D-QSAR study on a series of benzimidazole derivatives acting as hepatitis C virus inhibitors: application of kNN-molecular field analysis. Medicinal Chemistry, 6, 87–90. http://dx.doi.org/10.2174/15734061079132146010.2174/157340610791321460Suche in Google Scholar PubMed
[16] Ikegashira, K., Oka, T., Hirashima, S., Noji, S., Yamanaka, H., Hara, Y., Adachi, T., Tsuruha, J. I., Doi, S., Hase, Y., Noguchi, T., Ando, I., Ogura, N., Ikeda, S., & Hashimoto, H. (2006). Discovery of conformationally constrained tetracyclic compounds as potent hepatitis C virus NS5B RNA polymerase inhibitors. Journal of Medicinal Chemistry, 49, 6950–6953. DOI: 10.1021/jm0610245. http://dx.doi.org/10.1021/jm061024510.1021/jm0610245Suche in Google Scholar PubMed
[17] Kaushik-Basu, N., Bopda-Waffo, A., Talele, T. T., Basu, A., Chen, Y., & Kucukguzel, S. G. (2008a). 4-Thiazolidinones: a novel class of hepatitis C virus NS5B polymerase inhibitors. Frontiers in Bioscience, 13, 3857–3868. DOI: 10.2741/2974. 10.2741/2974Suche in Google Scholar PubMed
[18] Kaushik-Basu, N., Bopda-Waffo, A., Talele, T. T., Basu, A., Costa, P. R. R., da Silva, A. J. M., Sarafianos, S. G., Noël, F. (2008b). Identification and characterization of coumestans as novel HCV NS5B polymerase inhibitors. Nucleic Acids Research, 36, 1482–1496. DOI: 10.1093/nar/gkm1178. http://dx.doi.org/10.1093/nar/gkm117810.1093/nar/gkm1178Suche in Google Scholar PubMed PubMed Central
[19] Koch, U., & Narjes, F. (2007). Recent progress in the development of inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. Current Topics in Medicinal Chemistry, 7, 1302–1329. http://dx.doi.org/10.2174/15680260778121221110.2174/156802607781212211Suche in Google Scholar PubMed
[20] Kumar, D. V., Rai, R., Brameld, K. A., Somoza, J. R., Rajagopalan, R., Janc, J. W., Xia, Y. M., Ton, T. L., Shaghafi, M. B., Hu, H. Y., Lehoux, I., To, N., Young, W. B., & Green, M. J. (2011). Quinolones as HCV NS5B polymerase inhibitors. Bioorganic & Medicinal Chemistry Letters, 21, 82–87. DOI: 10.1016/j.bmcl.2010.11.068. http://dx.doi.org/10.1016/j.bmcl.2010.11.06810.1016/j.bmcl.2010.11.068Suche in Google Scholar PubMed
[21] Li, H., Tatlock, J., Linton, A., Gonzalez, J., Borchardt, A., Dragovich, P., Jewell, T., Prins, T., Zhou, R., Blazel, J., Parge, H., Love, R., Hickey, M., Doan, C., Shi, S., Duggal, R., Lewis, C., & Fuhrman, S. (2006). Identification and structure-based optimization of novel dihydropyrones as potent HCV RNA polymerase inhibitors. Bioorganic & Medicinal Chemistry Letters, 16, 4834–4838. DOI: 10.1016/j.bmcl.2006.06.065. http://dx.doi.org/10.1016/j.bmcl.2006.06.06510.1016/j.bmcl.2006.06.065Suche in Google Scholar PubMed
[22] Love, R. A., Parge, H. E., Yu, X., Hickey, M. J., Diehl, W., Gao, J. J., Wriggers, H., Ekker, A., Wang, L., Thomson, J. A., Dragovich, P. S., & Fuhrman, S. A. (2003). Crystallographic identification of a noncompetitive inhibitor binding site on the hepatitis C virus NS5B RNA polymerase enzyme. Journal of Virology, 77, 7575–7581. DOI: 10.1128/jvi.77.13.7575-7581.2003. http://dx.doi.org/10.1128/JVI.77.13.7575-7581.200310.1128/JVI.77.13.7575-7581.2003Suche in Google Scholar PubMed PubMed Central
[23] Lyne, P. D. (2002). Structure-based virtual screening: an overview. Drug Discovery Today, 7, 1047–1055. DOI: 10.1016/s1359-6446(02)02483-2. http://dx.doi.org/10.1016/S1359-6446(02)02483-210.1016/S1359-6446(02)02483-2Suche in Google Scholar
[24] Lyne, P. D., Kenny, P.W., Cosgrove, D. A., Deng, C., Zabludoff, S., Wendoloski, J. J., & Ashwell, S. J. (2004). Identification of compounds with nanomolar binding affinity for checkpoint kinase-1 using knowledge-based virtual screening. Journal of Medicinal Chemistry, 47, 1962–1968. DOI: 10.1021/jm030504i. http://dx.doi.org/10.1021/jm030504i10.1021/jm030504iSuche in Google Scholar PubMed
[25] Moradpour, D., Penin, F., & Rice, C. M. (2007). Replication of hepatitis C virus. Nature Reviews Microbiology, 5, 453–463. DOI: 10.1038/nrmicro1645. http://dx.doi.org/10.1038/nrmicro164510.1038/nrmicro1645Suche in Google Scholar PubMed
[26] Ontoria, J. M., Martín Hernando, J. I., Malancona, S., Attenni, B., Stansfield, I., Conte, I., Ercolani, C., Habermann, J., Ponzi, S., Di Filippo, M., Koch, U., Rowley, M., & Narjes, F. (2006). Identification of thieno[3,2-b]pyrroles as allosteric inhibitors of hepatitis C virus NS5B polymerase. Bioorganic & Medicinal Chemistry Letters, 16, 4026–4030. DOI: 10.1016/j.bmcl.2006.05.012. http://dx.doi.org/10.1016/j.bmcl.2006.05.01210.1016/j.bmcl.2006.05.012Suche in Google Scholar PubMed
[27] Patel, P. D., Patel, M. R., Kaushik-Basu, N., & Talele, T. T. (2008). 3D QSAR and molecular docking studies of benzimidazole derivatives as hepatitis C virus NS5B polymerase inhibitors. Journal of Chemical Information and Modeling, 48, 42–55. DOI: 10.1021/ci700266z. http://dx.doi.org/10.1021/ci700266z10.1021/ci700266zSuche in Google Scholar PubMed
[28] Patil, V. M., Gupta, S. P., & Samanta, S. (2010). A QSAR study on some series of anti-hepatitis C virus (HCV) agents. Letters in Drug Design & Discovery, 7, 139–148. DOI: 10.2174/157018010790225877. http://dx.doi.org/10.2174/15701801079022587710.2174/157018010790225877Suche in Google Scholar
[29] Patil, V. M., Gupta, S. P., Samanta, S., & Masand, N. (2011). 3D QSAR kNN-MFA studies on thiouracil derivatives as hepatitis C virus inhibitors. Medicinal Chemistry Research, 20, 1616–1621. DOI: 10.1007/s00044-010-9435-x. http://dx.doi.org/10.1007/s00044-010-9435-x10.1007/s00044-010-9435-xSuche in Google Scholar
[30] Powers, J. P., Piper, D. E., Li, Y., Mayorga, V., Anzola, J., Chen, J. M., Jaen, J. C., Lee, G., Liu, J. Q., Peterson, M. G., Tonn, G. R., Ye, Q. P., Walker, N. P. C., & Wang, Z. L. (2006). SAR and mode of action of novel non-nucleoside inhibitors of hepatitis C NS5b RNA polymerase. Journal of Medicinal Chemistry, 49, 1034–1046. DOI: 10.1021/jm050859x. http://dx.doi.org/10.1021/jm050859x10.1021/jm050859xSuche in Google Scholar PubMed
[31] Rarey, M., Kramer, B., Lengauer, T., & Klebe, G. (1996). A fast flexible docking method using an incremental construction algorithm, Journal of Molecular Biology, 261, 470–489. DOI: 10.1006/jmbi.1996.0477. http://dx.doi.org/10.1006/jmbi.1996.047710.1006/jmbi.1996.0477Suche in Google Scholar PubMed
[32] Rarey, M., Kramer, B., & Lengauer, T. (1997). Multiple automatic base selection: Protein-ligand docking based on incremental construction without manual intervention. Journal of Computer Aided Molecular Design, 11, 369–384. DOI: 10.1023/a:1007913026166. http://dx.doi.org/10.1023/A:100791302616610.1023/A:1007913026166Suche in Google Scholar
[33] Rester, U. (2008). From virtuality to reality — Virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. Current Opinion in Drug Discovery & Development, 11, 559–568. Suche in Google Scholar
[34] Rong, F., Chow, S. Y., Yan, S. Q., Larson, G., Hong, Z., & Wu, J. (2007). Structure-activity relationship (SAR) studies of quinoxalines as novel HCV NS5B RNA-dependent RNA polymerase inhibitors. Bioorganic & Medicinal Chemistry Letters, 17, 1663–1666. DOI: 10.1016/j.bmcl.2006.12.103. http://dx.doi.org/10.1016/j.bmcl.2006.12.10310.1016/j.bmcl.2006.12.103Suche in Google Scholar PubMed
[35] Shaw, A. N., Tedesco, R., Bambal, R., Chai, D. P., Concha, N. O., Darcy, M. G., Dhanak, D., Duffy, K. J., Fitch, D. M., Gates, A., Johnston, V. K., Keenan, R. M., Lin-Goerke, J., Liu, N. N., Sarisky, R. T., Wiggall, K. J., & Zimmerman, M. N. (2009). Substituted benzothiadizine inhibitors of Hepatitis C virus polymerase. Bioorganic & Medicinal Chemistry Letters, 19, 4350–4353. DOI: 10.1016/j.bmcl.2009.05.091. http://dx.doi.org/10.1016/j.bmcl.2009.05.09110.1016/j.bmcl.2009.05.091Suche in Google Scholar PubMed
[36] Soriano, V., Peters, M. G., & Zeuzem, S. (2009). New therapies for hepatitis C virus infection. Clinical Infectious Diseases, 48, 313–320. DOI: 10.1086/595848. http://dx.doi.org/10.1086/59584810.1086/595848Suche in Google Scholar PubMed
[37] Talele, T. T. (2008). Multiple allosteric pockets of HCV NS5B polymerase and its inhibitors: A structure based insight. Current Bioactive Compounds, 4, 86–109. DOI: 10.2174/157340708785294217. http://dx.doi.org/10.2174/15734070878529421710.2174/157340708785294217Suche in Google Scholar
[38] Tedesco, R., Shaw, A. N., Bambal, R., Chai, D. P., Concha, N. O., Darcy, M. G., Dhanak, D., Fitch, D. M., Gates, A., Gerhardt, W. G., Halegoua, D. L., Han, C., Hofmann, G. A., Johnston, V. K., Kaura, A. C., Liu, N. N., Keenan, R. M., Lin-Goerke, J., Sarisky, R. T., Wiggall, K. J., Zimmerman, M. N., & Duffy, K. J. (2006). 3-(1,1-dioxo-2H-(1,2,4)-benzothiadiazin-3-yl)-4-hydroxy-2(1H)-quinolinones, potent inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Journal of Medicinal Chemistry, 49, 971–983. DOI: 10.1021/jm050855s. http://dx.doi.org/10.1021/jm050855s10.1021/jm050855sSuche in Google Scholar PubMed
[39] Wang, Q. M., & Heinz, B. A. (2000). Recent advances in prevention and treatment of hepatitis C virus infections. Progress in Drug Research, 55, 1–32. DOI: 10.1007/978-3-0348-8385-61. http://dx.doi.org/10.1007/978-3-0348-8385-6_1Suche in Google Scholar
[40] Yan, S. Q., Appleby, T., Larson, G., Wu, J. Z., Hamatake, R., Hong, Z., & Yao, N. H. (2006). Structure-based design of a novel thiazolone scaffold as HCV NS5B polymerase allosteric inhibitors. Bioorganic & Medicinal Chemistry Letters, 16, 5888–5891. DOI: 10.1016/j.bmcl.2006.08.056. http://dx.doi.org/10.1016/j.bmcl.2006.08.05610.1016/j.bmcl.2006.08.056Suche in Google Scholar PubMed
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Characterisation of VOC composition of Slovak monofloral honeys by GC×GC-TOF-MS
- Combustion-derived CdO nanopowder as a heterogeneous basic catalyst for efficient synthesis of sulfonamides from aromatic amines using p-toluenesulfonyl chloride
- Molybdate sulfonic acid: preparation, characterization, and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis
- Enantioselective extraction of hydrophilic 2-chloromandelic acid enantiomers by hydroxypropyl-β-cyclodextrin: experiments and modeling
- Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures
- Improvement of aquatic pollutant partition coefficient correlations using 1D molecular descriptors — chlorobenzene case study
- Mercury characterisation in urban particulate matter
- Thermal decomposition of lanthanide(III) complexes of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand
- Effect of hyamine on electrochemical behaviour of brass alloy in HNO3 solution
- Calorimetric determination of the effect of additives on cement hydration process
- Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads
- Facile synthesis of 3-substituted quinazoline-2,4-dione and 2,3-di-substituted quinazolinone derivatives
- Virtual screening of imidazole analogs as potential hepatitis C virus NS5B polymerase inhibitors
- A new phenanthroindolizidine alkaloid from Tylophora indica
Artikel in diesem Heft
- Characterisation of VOC composition of Slovak monofloral honeys by GC×GC-TOF-MS
- Combustion-derived CdO nanopowder as a heterogeneous basic catalyst for efficient synthesis of sulfonamides from aromatic amines using p-toluenesulfonyl chloride
- Molybdate sulfonic acid: preparation, characterization, and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis
- Enantioselective extraction of hydrophilic 2-chloromandelic acid enantiomers by hydroxypropyl-β-cyclodextrin: experiments and modeling
- Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures
- Improvement of aquatic pollutant partition coefficient correlations using 1D molecular descriptors — chlorobenzene case study
- Mercury characterisation in urban particulate matter
- Thermal decomposition of lanthanide(III) complexes of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand
- Effect of hyamine on electrochemical behaviour of brass alloy in HNO3 solution
- Calorimetric determination of the effect of additives on cement hydration process
- Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads
- Facile synthesis of 3-substituted quinazoline-2,4-dione and 2,3-di-substituted quinazolinone derivatives
- Virtual screening of imidazole analogs as potential hepatitis C virus NS5B polymerase inhibitors
- A new phenanthroindolizidine alkaloid from Tylophora indica