Facile synthesis of 3-substituted quinazoline-2,4-dione and 2,3-di-substituted quinazolinone derivatives
-
Mahmoud Farouk
, Salman Alrokayan
Abstract
3-Substituted quinazoline-2,4(1H,3H)-dione and 2,3-di-substituted quinazolineone derivatives attract considerable interest due to their pharmacological properties. In this paper, we report the synthesis of N-substituted-3-nitrophthalimide derivatives II–III, the reactions of phthalimide III with amines, hydrazines, and amino acid derivatives to synthesise a small library of 3-substituted-5-nitroquinazoline-2,4(1H,3H)-diones IV–XIV and 2,3-di-substituted-6-nitro-quinazolineones XVIII–XIX.
[1] Connolly, D. J., Cusack, D., O’sullivan, T. P.,& Guiry, P. J. (2005). Synthesis of quinazolinones and quinazolines. Tetrahedron, 61, 10153–10202. DOI: 10.1016/j.tet.2005.07.010. http://dx.doi.org/10.1016/j.tet.2005.07.01010.1016/j.tet.2005.07.010Search in Google Scholar
[2] Fahmy, A. F. M. (2006). Heterocycles as versatile building blocks in different synthetic strategies. ARKIVOC, 2006(vii), 395–415. 10.3998/ark.5550190.0007.729Search in Google Scholar
[3] Fahmy, A. F. M., Aly, N. F., Nada, A.,& Aly, N. Y. (1977). Phthalimides. I. Base-catalyzed Lossen rearrangement and acid-catalyzed Beckmann rearrangement with N-(arylsulfonyloxy)phthalimides. Bulletin of the Chemical Society of Japan, 50, 2678–2681. DOI: 10.1246/bcsj.50.2678. 10.1246/bcsj.50.2678Search in Google Scholar
[4] Fahmy, A. F. M., Aly, N. F.,& Orabi, M. O. (1978). Phthalimides. III. Aminolysis, hydrazinolysis, pyrolysis, and activation of Grignard reagents on phthalimide derivatives. Bulletin of the Chemical Society of Japan, 51, 2148–2152. DOI: 10.1246/bcsj.51.2148. http://dx.doi.org/10.1246/bcsj.51.214810.1246/bcsj.51.2148Search in Google Scholar
[5] Fahmy, A. F., Youssef, M. S. K., Halim M. S. A., Hassan, M. A., & Sauer, J. (1986). Novel synthesis of pyridopyrimidine diones. Heterocycles, 24, 2201–2213. DOI: 10.3987/r-198608-2201. http://dx.doi.org/10.3987/R-1986-08-2201Search in Google Scholar
[6] Farouk, M. (2009). Bioactive heterocyclic’s based nanotechnology. Synthesis and in-vitro evaluation of new 3-substituted quinazolinediones. In First International Conference for NanoTechnology Industries (ICNI 2009), April 5–7, 2009. Riyadh, Saudi Arabia: King Saud University. Search in Google Scholar
[7] Farouk, M., Alrokayan, S. A., Imran, A., & Abu-Salah, K. M. (2012). One-pot synthesis and luminescent spectra of 3-allyl substituted quinazoline-2,4-dione derivatives as allyl capping agents. Chemical Papers, 66, 75–78. DOI: 10.2478/s11696011-0094-2. http://dx.doi.org/10.2478/s11696-011-0094-2Search in Google Scholar
[8] Fieser, L. F., & Fieser, M. (1967). Reagents for organic synthesis (pp. 485–486). New York, NY, USA: Wiley. Search in Google Scholar
[9] Furniss, B. S., Hannaford, A. J., Smith, P. W. G., Tatchell, A. R., & Vogel, A. I. (1989). Vogel’s textbook of practical organic chemistry (5th ed.). Harlow, UK: Pearson Education Limited. Search in Google Scholar
[10] Gütschow, M. (1999). One-pot reactions of N-(mesyloxy)phthalimides with secondary amines to 2-ureidobenzamides, 2-ureidobenzoic acids, ethyl 2-ureidobenzoates, or isatoic anhydrides. The Journal of Organic Chemistry, 64, 5109–5115. DOI: 10.1021/jo9900634. http://dx.doi.org/10.1021/jo990063410.1021/jo9900634Search in Google Scholar PubMed
[11] Huang, C., Meng, X., Cui, J., & Li, Z. (2009). Synthesis of 3-N-sugar-substituted-2,4(1H,3H)-quinazolinediones as anti-angiogenesis agents. Molecules, 14, 2447–2457. DOI: 10.3390/molecules14072447. http://dx.doi.org/10.3390/molecules1407244710.3390/molecules14072447Search in Google Scholar PubMed PubMed Central
[12] Jain, K. S., Bariwal, J. B., Kathiravan, M. K., Phoujdar, M. S., Sahne, R. S., Chauhan, B. S., Shah, A. K., & Yadav, M. R. (2008). Recent advances in selective α 1-adrenoreceptor antagonists as antihypertensive agents. Bioorganic & Medicinal Chemistry, 16, 4759–4800. DOI: 10.1016/j.bmc.2008.02.091. http://dx.doi.org/10.1016/j.bmc.2008.02.09110.1016/j.bmc.2008.02.091Search in Google Scholar PubMed
[13] Kakuta, H., Koiso, Y., Nagasawa, K., & Hashimoto, Y. (2003a). Fluorescent bioprobes for visualization of puromycin-sensitive aminopeptidase in living cells. Bioorganic & Medical Chemistry Letters, 13, 83–86. DOI: 10.1016/s0960894x(02)00845-4. http://dx.doi.org/10.1016/S0960-894X(02)00845-4Search in Google Scholar
[14] Kakuta, H., Tanatani, A., Nagasawa, K., & Hashimoto, Y. (2003b). Specific nonpeptide inhibitors of puromycin-sensitive aminopeptidase with a 2,4(1H,3H)-quinazolinedione skeletone. Chemical and Pharmaceutical Bulletin, 51, 1273–1282. DOI: 10.1248/cpb.51.1273. http://dx.doi.org/10.1248/cpb.51.127310.1248/cpb.51.1273Search in Google Scholar PubMed
[15] Katritzky, A. R., & Rees, C. W. (1984). Comprehensive heterocyclic chemistry: The structure, reactions, synthesis and uses of heterocyclic compounds (Vol. 3). Oxford, UK: Pergamon Press. Search in Google Scholar
[16] Kirincich, S. J., Xiang, J., Green, N., Tam, S., Yang, H. Y., Shim, J., Shen, M. W. H., Clark, J. D., & McKew, J. C. (2009). Benzhydrylquinazolinediones: Novel cytosolic phospholipase A2α ginhibitors with improved physicochemical properties. Bioorganic & Medicinal Chemistry, 17, 4383–4405. DOI: 10.1016/j.bmc.2009.05.027. http://dx.doi.org/10.1016/j.bmc.2009.05.02710.1016/j.bmc.2009.05.027Search in Google Scholar PubMed
[17] Kerrigan, J. E., Walters, M. C., Forrester, K. J., Crowder, J. B., & Christopher, L. J. (2000). 6-Acylamino-2-[(alkylsulfonyl)oxy]-1H-isoindole-1,3-dione mechanism-based inhibitors of human leukocyte elastase. Bioorganic & Medicinal Chemistry Letters, 10, 27–30. DOI: 10.1016/s0960894x(99)00588-0. http://dx.doi.org/10.1016/S0960-894X(99)00588-0Search in Google Scholar
[18] Koay, N., & Campeau, L. C. (2011). Efficient preparation of 3-substituted quinazolinediones directly from anthranilic acids and isocyanates. Journal of Heterocyclic Chemistry, 48, 473–478. DOI: 10.1002/jhet.551. http://dx.doi.org/10.1002/jhet.55110.1002/jhet.551Search in Google Scholar
[19] Koller, M., Lingenhoehl, K., Schmutz, M., Vranesic, I. T., Kallen, J., Auberson, Y. P., Carcache, D. A., Mattes, H., Ofner, S., Orain, D., & Urwyler, S. (2011). Quinazolinedione sulfonamides: A novel class of competitive AMPA receptor antagonists with oral activity. Bioorganic & Medicinal Chemistry Letters, 21, 3385–3361. DOI: 10.1016/j.bmcl.2011. 04.017. http://dx.doi.org/10.1016/j.bmcl.2011.04.01710.1016/j.bmcl.2011.04.017Search in Google Scholar
[20] Li, J., Chen, X., Shi, D., Ma, S., Li, Zhang, Q., & Tang, J. (2009). A new and facile synthesis of quinazoline-2,4(1H,3H)-diones. Organic Letters, 11, 1193–1196. DOI: 10.1021/ol900093h. http://dx.doi.org/10.1021/ol900093h10.1021/ol900093hSearch in Google Scholar
[21] Martyn, D. C., Moore, M. J., & Abell, A. D. (1999). Succinimide and saccharin-based enzyme-activated inhibitors of serine proteases. Current Pharmaceutical Design, 5, 405–416. Search in Google Scholar
[22] Neumann, U., & Gütschow, M. (1994). N-(Sulfonyloxy)phthalimides and analogs are potent inactivators of serine proteases. Journal of Biological Chemistry, 269, 21561–21567. 10.1016/S0021-9258(17)31841-0Search in Google Scholar
[23] Orain, D., Ofner, S., Koller, M., Carcache, D. A., Froestl, W., Allgeier, H., Rasetti, V., Nozulak, J., Mattes, H., Soldermann, N., Floersheim, P., Desrayaud, S., Kallen, J., Lingenhoehl, K., & Urwyler, S. (2012). 6-Amino quinazolinedione sulfonamides as orally active competitive AMPA receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 22, 996–999. DOI: 10.1016/j.bmcl.2011.12.009. http://dx.doi.org/10.1016/j.bmcl.2011.12.00910.1016/j.bmcl.2011.12.009Search in Google Scholar PubMed
[24] Perrin, D. D., & Armarego, W. L. F. (1988). Purification of laboratory chemicals (3rd ed.). Oxford, UK: Pergamon Press. Search in Google Scholar
[25] Petrov, J. S., & Andreev, G. N. (2005). Synthesis of 2,4(1H,3H)-quinazolinedione and 3-substituted 2,4(1H,3H)-quianzolinediones. Organic Preparations and Procedures International: The New Journal for Organic Synthesis, 37, 560–565. DOI: 10.1080/00304940509354986. http://dx.doi.org/10.1080/0030494050935498610.1080/00304940509354986Search in Google Scholar
[26] Rivero, I. A., Espinoza, K., & Somanathan, R. (2004). Syntheses of quinazoline-2,4-dione alkaloids and analogues from Mexican Zanthoxylum species. Molecules, 9, 609–616. DOI: 10.3390/90700609. http://dx.doi.org/10.3390/9070060910.3390/90700609Search in Google Scholar PubMed PubMed Central
[27] Rivero, I. A., Guerrero, L., Espinoza, K. A., Meza, M. C., & Rodríguez, J. R. (2009). Alkylation of 2,4-(1H,3H)-quinazolinediones with dialkyl carbonates under microwave irradiations. Molecules, 14, 1860–1868. DOI: 10.3390/molecules14051860. http://dx.doi.org/10.3390/molecules1405186010.3390/molecules14051860Search in Google Scholar PubMed PubMed Central
[28] Sheradsky, T., & Itzhak, N. (1986). Reaction of carbanions with N-tosyloxyphthalimide. Formation of 3, 3-disubstituted quinoline-2, 4-diones. Journal of the Chemical Society, Perkin Transactions, 1986, 13–16. DOI: 10.1039/p19860000013. 10.1039/p19860000013Search in Google Scholar
[29] Shiau, C. Y., Chern, J. W., Liu, K. C., Chan, C. H., Yen, M. H., Cheng, M. C., & Wang, Y. (1990). Studies on quinazolinones. 2. Synthesis of 2-(4-benzylpiperazin-1-ylmethyl)-2,3-dihydro-5H-oxazolo[2,3-6]quinazolin-5-one and -2,3-dihydro-5H-thiazolo[2,3-b]quinazolin-5-one. Journal of Heterocyclic Chemistry, 27, 1467–1472. DOI: 10.1002/jhet.5570270552. http://dx.doi.org/10.1002/jhet.557027055210.1002/jhet.5570270552Search in Google Scholar
[30] Vagnoni, L. M., Gronostaj, M., & Kerrigan, J. E. (2001). 6-Acylamino-2-(ethylsulfonyl)oxy]-1H-isoindole-1,3-diones mechanism-based inhibitors of human leukocyte elastase and cathepsin G: effect of chirality in the 6-acylamino substituent on inhibitory potency and selectivity. Bioorganic & Medicinal Chemistry, 9, 637–645. DOI: 10.1016/s09680896(00)00281-9. http://dx.doi.org/10.1016/S0968-0896(00)00281-9Search in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Characterisation of VOC composition of Slovak monofloral honeys by GC×GC-TOF-MS
- Combustion-derived CdO nanopowder as a heterogeneous basic catalyst for efficient synthesis of sulfonamides from aromatic amines using p-toluenesulfonyl chloride
- Molybdate sulfonic acid: preparation, characterization, and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis
- Enantioselective extraction of hydrophilic 2-chloromandelic acid enantiomers by hydroxypropyl-β-cyclodextrin: experiments and modeling
- Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures
- Improvement of aquatic pollutant partition coefficient correlations using 1D molecular descriptors — chlorobenzene case study
- Mercury characterisation in urban particulate matter
- Thermal decomposition of lanthanide(III) complexes of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand
- Effect of hyamine on electrochemical behaviour of brass alloy in HNO3 solution
- Calorimetric determination of the effect of additives on cement hydration process
- Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads
- Facile synthesis of 3-substituted quinazoline-2,4-dione and 2,3-di-substituted quinazolinone derivatives
- Virtual screening of imidazole analogs as potential hepatitis C virus NS5B polymerase inhibitors
- A new phenanthroindolizidine alkaloid from Tylophora indica
Articles in the same Issue
- Characterisation of VOC composition of Slovak monofloral honeys by GC×GC-TOF-MS
- Combustion-derived CdO nanopowder as a heterogeneous basic catalyst for efficient synthesis of sulfonamides from aromatic amines using p-toluenesulfonyl chloride
- Molybdate sulfonic acid: preparation, characterization, and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis
- Enantioselective extraction of hydrophilic 2-chloromandelic acid enantiomers by hydroxypropyl-β-cyclodextrin: experiments and modeling
- Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures
- Improvement of aquatic pollutant partition coefficient correlations using 1D molecular descriptors — chlorobenzene case study
- Mercury characterisation in urban particulate matter
- Thermal decomposition of lanthanide(III) complexes of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand
- Effect of hyamine on electrochemical behaviour of brass alloy in HNO3 solution
- Calorimetric determination of the effect of additives on cement hydration process
- Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads
- Facile synthesis of 3-substituted quinazoline-2,4-dione and 2,3-di-substituted quinazolinone derivatives
- Virtual screening of imidazole analogs as potential hepatitis C virus NS5B polymerase inhibitors
- A new phenanthroindolizidine alkaloid from Tylophora indica