Abstract
Molybdate sulfonic acid (MSA) as a highly efficient catalyst was synthesized and employed for the synthesis of octahydroxanthene-1,8-dione derivatives. MSA efficiently catalyzed condensation of a wide range of aryl aldehydes and cyclohexane-1,3-diones to obtain octahydroxanthene-1,8-diones. It was characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), and FT-IR spectroscopy. This catalyst can be recovered and reused several times in other reactions maintaining its high activity. This novel and green method is very cheap and has many advantages such as excellent yields, the use of recoverable and eco-friendly catalysts, and a simple work-up procedure.
[1] Ahmad, M., King, T. A., Ko, D. K., Cha, B. H., & Lee, J. (2002). Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. Journal of Physics D: Applied Physics, 35, 1473–1476. DOI: 10.1088/0022-3727/35/13/303. http://dx.doi.org/10.1088/0022-3727/35/13/30310.1088/0022-3727/35/13/303Search in Google Scholar
[2] Bekaert, A., Andrieux, J., & Plat, M. (1992). New total synthesis of bikaverin. Tetrahedron Letters, 33, 2805–2806. DOI: 10.1016/s0040-4039(00)78863-0. http://dx.doi.org/10.1016/S0040-4039(00)78863-010.1016/S0040-4039(00)78863-0Search in Google Scholar
[3] Beletskaya, I., & Tyurin, V. (2010). Recyclable nanostructured catalytic systems in modern environmentally friendly organic synthesis. Molecules, 15, 4792–4814. DOI: 10.3390/molecules 15074792. http://dx.doi.org/10.3390/molecules1507479210.3390/molecules15074792Search in Google Scholar
[4] Bhowmik, B. B., & Ganguly, P. (2005). Photophysics of xanthene dyes in surfactant solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61, 1997–2003. DOI: 10.1016/j.saa.2004.07.031. http://dx.doi.org/10.1016/j.saa.2004.07.03110.1016/j.saa.2004.07.031Search in Google Scholar
[5] Bin, L. L., Shou, J. T., Sha, H. L., Meng, L., Na, Q., & Shuang, L. T. (2006). The reaction of aromatic aldehydes and 1,3-cyclohexanedione in aqueous media. E-Journal of Chemistry, 3, 117–121. http://dx.doi.org/10.1155/2006/68653810.1155/2006/686538Search in Google Scholar
[6] Casiraghi, G., Casnati, G., & Cornia, M. (1973). Regiospecific reactions of phenol salts: reaction-pathways of alkylphenoxy-magnesiumhalides with triethylorthoformate. Tetrahedron Letters, 14, 679–682. DOI: 10.1016/s0040-4039(00)72432-4. http://dx.doi.org/10.1016/S0040-4039(00)72432-410.1016/S0040-4039(00)72432-4Search in Google Scholar
[7] Chen, B. H., Fan, Y. S., Ma, Y. X., Li, P. R., & Liu, W. M. (2002). Lewis acids-catalyzed nucleophilic addition of allylstannane to aroylhydrazone. Chemical Papers, 56, 247–249. Search in Google Scholar
[8] Chibale, K., Visser, M., van Schalkwyk, D., Smith, P. J., Saravanamuthu, A., & Fairlamb, A. H. (2003). Exploring the potential of xanthene derivatives as trypanothione reductase inhibitors and chloroquine potentiating agents. Tetrahedron, 59, 2289–2296. DOI: 10.1016/s0040-4020(03)00240-0. http://dx.doi.org/10.1016/S0040-4020(03)00240-010.1016/S0040-4020(03)00240-0Search in Google Scholar
[9] Clark, J. H. (2002). Solid acids for green chemistry. Accounts of Chemical Research, 35, 791–797. DOI: 10.1021/ar010072a. http://dx.doi.org/10.1021/ar010072a10.1021/ar010072aSearch in Google Scholar PubMed
[10] Clark, J. H., & Macquarrie, D. J. (1996). Environmentally friendly catalytic methods. Chemical Society Reviews, 25, 303–310. DOI: 10.1039/cs9962500303. http://dx.doi.org/10.1039/cs996250030310.1039/cs9962500303Search in Google Scholar
[11] Das, B., Thirupathi, P., Mahender, I., Reddy, V. S., & Rao, Y. K. (2006). Amberlyst-15: An efficient reusable heterogeneous catalyst for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines. Journal of Molecular Catalysis A: Chemical, 247, 233–239. DOI: 10.1016/j.molcata.2005.11.048. http://dx.doi.org/10.1016/j.molcata.2005.11.04810.1016/j.molcata.2005.11.048Search in Google Scholar
[12] El-Brashy, A. M., Metwally, M. E. S., & El-Sepai, F. A. (2004). Spectrophotometric determination of some fluoroquinolone antibacterials by binary complex formation with xanthene dyes. Il Farmaco, 59, 809–817. DOI: 10.1016/j.farmac.2004.07.001. http://dx.doi.org/10.1016/j.farmac.2004.07.00110.1016/j.farmac.2004.07.001Search in Google Scholar
[13] Ding, Y., Hou, N., Chen, N., & Xia, Y. (2006). Phase diagrams of Li2MoO4-Na2MoO4 and Na2MoO4-K2MoO4 systems. Rare Metals, 25, 316–320. DOI: 10.1016/s1001-0521(06)60060-0. http://dx.doi.org/10.1016/S1001-0521(06)60060-010.1016/S1001-0521(06)60060-0Search in Google Scholar
[14] Fan, X., Hu, X., Zhang, X., & Wang, J. (2005). InCl3·4H2Opromoted green preparation of xanthenedione derivatives in ionic liquids. Canadian Journal of Chemistry, 83, 16–20. DOI: 10.1139/v04-155. http://dx.doi.org/10.1139/v04-15510.1139/v04-155Search in Google Scholar
[15] Horning, E. C., & Horning, M. G. (1946). Methone derivatives of aldehydes. Journal of Organic Chemistry, 11, 95–99. DOI: 10.1021/jo01171a014. http://dx.doi.org/10.1021/jo01171a01410.1021/jo01171a014Search in Google Scholar PubMed
[16] Ion, R. M., Planner, A., Wiktorowicz, K., & Frackowiak, D. (1998). The incorporation of various porphyrins into blood cells measured via flow cytometry, absorption and emission spectroscopy. Acta Biochimica Polonica, 45, 833–845. 10.18388/abp.1998_4279Search in Google Scholar
[17] Jha, A., & Beal, J. (2004). Convenient synthesis of 12H-benzo[a]xanthenes from 2-tetralone. Tetrahedron Letters, 45, 8999–9001. DOI:10.1016/j.tetlet.2004.10.046. http://dx.doi.org/10.1016/j.tetlet.2004.10.04610.1016/j.tetlet.2004.10.046Search in Google Scholar
[18] Jin, T. S., Zhang, J. S., Wang, A. Q., & Li, T. S. (2006). Ultrasound-assisted synthesis of 1,8-dioxo-octahydroxanthene derivatives catalyzed by p-dodecylbenzenesulfonic acid in aqueous media. Ultrasonics Sonochemistry, 13, 220–224. DOI: 10.1016/j.ultsonch.2005.04.002. http://dx.doi.org/10.1016/j.ultsonch.2005.04.00210.1016/j.ultsonch.2005.04.002Search in Google Scholar PubMed
[19] John, A., Yadav, P. J. P., & Palaniappan, S. (2006). Clean synthesis of 1,8-dioxo-dodecahydroxanthene derivatives catalyzed by polyaniline-p-toluenesulfonate salt in aqueous media. Journal of Molecular Catalysis A: Chemical, 248, 121–125. DOI: 10.1016/j.molcata.2005.12.017. http://dx.doi.org/10.1016/j.molcata.2005.12.01710.1016/j.molcata.2005.12.017Search in Google Scholar
[20] Kafuku, G., Lee, K. T., & Mbarawa, M. (2010). The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil. Chemical Papers, 64, 734–740. DOI: 10.2478/s11696-010-0063-1. http://dx.doi.org/10.2478/s11696-010-0063-110.2478/s11696-010-0063-1Search in Google Scholar
[21] Kantevari, S., Bantu, R., & Nagarapu, L. (2006). TMSCl mediated highly efficient one-pot synthesis of octahydroquinazolinone and 1,8-dioxo-octahydroxanthene derivatives. Arkivoc, 2006(xvi), 136–148. Search in Google Scholar
[22] Kantevari, S., Bantu, R., & Nagarapu, L. (2007). HClO4-SiO2 and PPA-SiO2 catalyzed efficient one-pot Knoevenagel condensation, Michael addition and cyclo-dehydration of dimedone and aldehydes in acetonitrile, aqueous and solvent free conditions: Scope and limitations. Journal of Molecular Catalysis A: Chemical, 269, 53–57. DOI: 10.1016/j.molcata.2006.12.039. http://dx.doi.org/10.1016/j.molcata.2006.12.03910.1016/j.molcata.2006.12.039Search in Google Scholar
[23] Karade, H. N., Sathe, M., & Kaushik, M. P. (2007). An efficient synthesis of 1,8-dioxo-octahydroxanthenes using tetrabutylammonium hydrogen sulfate. Arkivoc, 2007(xiii), 252–258. 10.3998/ark.5550190.0008.d28Search in Google Scholar
[24] Karami, B., & Kiani, M. (2011). ZrOCl2·8H2O/SiO2: An efficient and recyclable catalyst for the preparation of coumarin derivatives by Pechmann condensation reaction. Catalysis Communications, 14, 62–67. DOI: 10.1016/j.catcom.2011.07.002. http://dx.doi.org/10.1016/j.catcom.2011.07.00210.1016/j.catcom.2011.07.002Search in Google Scholar
[25] Karami, B., Eskandari, K., Farahi, M., & Barmas, A. (2012a). An effective and new method for the synthesis of polysubstituted imidazoles by the use of CrCl3.6H2O as a green and reusable catalyst: synthasis of some novel imidazole derivatives. Journal of the Chinese Chemical Society, 59, 473–479. DOI: 10.1002/jccs.201100555. http://dx.doi.org/10.1002/jccs.20110042110.1002/jccs.201100555Search in Google Scholar
[26] Karami, B., Ghashghaee, V., & Khodabakhshi, S. (2012b). Novel silica tungstic acid (STA): Preparation, characterization and its first catalytic application in synthesis of new benzimidazoles. Catalysis Communications, 20, 71–75. DOI: 10.1016/j.catcom.2012.01.012. http://dx.doi.org/10.1016/j.catcom.2012.01.01210.1016/j.catcom.2012.01.012Search in Google Scholar
[27] Karami, B., Khodabakhshi, S., & Haghighijou, Z. (2012c). Tungstate sulfuric acid: preparation, characterization, and application in catalytic synthesis of novel benzimidazoles. Chemical Papers, 66, 684–690. DOI: 10.2478/s11696-012-0152-4. http://dx.doi.org/10.2478/s11696-012-0152-410.2478/s11696-012-0152-4Search in Google Scholar
[28] Kidwai, M., & Bhatnagar, D. (2010). Polyethylene glycolmediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate. Chemical Papers, 64, 825–828. DOI: 10.2478/s11696-010-0070-2. http://dx.doi.org/10.2478/s11696-010-0070-210.2478/s11696-010-0070-2Search in Google Scholar
[29] Kinjo, J., Uemura, H., Nohara, T., Yamashita, M., Marubayashi, N., & Yoshihira, K. (1995). Novel yellow pigment from Pterocarpus santalinus: Biogenetic hypothesis for santalin analogs. Tetrahedron Letters, 36, 5599–5602. DOI: 10.1016/0040-4039(95)01071-o. 10.1016/0040-4039(95)01071-OSearch in Google Scholar
[30] Knight, C. G., & Stephens, T. (1989). Xanthene-dye-labelled phosphatidylethanolamines as probes of interfacial pH. Studies in phospholipid vesicles. Biochemical Journal, 258, 683–687. 10.1042/bj2580683Search in Google Scholar PubMed PubMed Central
[31] Knight, D. W., & Little, P. B. (2001). The first efficient method for the intramolecular trapping of benzynes by phenols: a new approach to xanthenes. Journal of the Chemical Society, Perkin Transactions 1, 2001, 1771–1777. DOI:10.1039/b103834f. http://dx.doi.org/10.1039/b103834f10.1039/b103834fSearch in Google Scholar
[32] Kuo, C. W., & Fang, J. M. (2001). Synthesis of xanthenes, indanes, and tetrahydronaphthalenes via intramolecular phenyl-carbonyl coupling reactions. Synthetic Communications, 31, 877–892. DOI: 10.1081/scc-100103323. http://dx.doi.org/10.1081/SCC-10010332310.1081/SCC-100103323Search in Google Scholar
[33] Martins, M. A. P., Teixeira, M. V. M., Cunico, W., Scapin, E., Mayer, R., Pereira, C. M. P., Zanatta, N., Bonacorso, H. G., Peppe, C., & Yuan, Y. F. (2004). Indium(III) bromide catalyzed one-pot synthesis of trichloromethylated tetrahydropyrimidinones. Tetrahedron Letters, 45, 8991–8994. DOI: 10.1016/j.tetlet.2004.10.048. http://dx.doi.org/10.1016/j.tetlet.2004.10.04810.1016/j.tetlet.2004.10.048Search in Google Scholar
[34] Martins, M. A. P., Peres, R. L., Frizzo, C. P., Scapin, E., Moreira, D. N., Fiss, G. F., Zanatta, N., & Bonacorso, H. G. (2009). Solvent-free route to β-enamino dichloromethyl ketones and application in the synthesis of novel 5-dichloromethyl-1H-pyrazoles. Journal of Heterocyclic Chemistry, 46, 1247–1251. DOI: 10.1002/jhet.227. http://dx.doi.org/10.1002/jhet.22710.1002/jhet.227Search in Google Scholar
[35] Movassaghi, M., & Jacobsen, E. N. (2002). A direct method for the conversion of terminal epoxides into γ-butanolides. Journal of the American Chemical Society, 124, 2456–2457. DOI: 10.1021/ja025604c. http://dx.doi.org/10.1021/ja025604c10.1021/ja025604cSearch in Google Scholar PubMed
[36] Olah, G. A., Molhotra, R., & Narang, S. C. (1978). Aromatic substitution. 43. Perfluorinated resinsulfonic acid catalyzed nitration of aromatics. The Journal of Organic Chemistry, 43, 4628–4630. DOI: 10.1021/jo00418a019. http://dx.doi.org/10.1021/jo00418a01910.1021/jo00418a019Search in Google Scholar
[37] Poor Heravi, M. R. (2009). Selectfluor™ promoted synthesis of 9-aryl-1,8-dioxooctahydroxanthane derivatives under solvent-free conditions. Journal of the Iranian Chemical Society, 6, 483–488. http://dx.doi.org/10.1007/BF0324652510.1007/BF03246525Search in Google Scholar
[38] Prakash, G. K. S., Mathew, T., Mandal, M., Farnia, M., & Olah, G. A. (2004). Aroylation of aromatics with aryl carboxylic acids over Nafion-H (polymeric perfluoroalkanesulfonic acid), an environmentally friendly solid acid catalyst. Arkivoc, 2004(viii), 103–110. Search in Google Scholar
[39] Qi, X., Rice, G. T., Lall, M. S., Plummer, M. S., & White, M. C. (2010). Diversification of a β-lactam pharmacophore via allylic C-H amination: accelerating effect of Lewis acid co-catalyst. Tetrahedron, 66, 4816–4826. DOI: 10.1016/j.tet.2010.04.064. http://dx.doi.org/10.1016/j.tet.2010.04.06410.1016/j.tet.2010.04.064Search in Google Scholar PubMed PubMed Central
[40] Saint-Ruf, G., Hieu, H. T., & Poupelin, J. P. (1975). The effect of dibenzoxanthenes on the paralyzing action of zoxazolamine. Naturwissenschaften, 62, 584–585. DOI: 10.1007/ bf01166986. http://dx.doi.org/10.1007/BF0116698610.1007/BF01166986Search in Google Scholar PubMed
[41] Seyyedhamzeh, M., Mirzaei, P., & Bazgir, A. (2008). Solventfree synthesis of aryl-14H-dibenzo[a,j]xanthenes and 1,8-dioxo-octahydro-xanthenes using silica sulfuric acid as catalyst. Dyes and Pigments, 76, 836–839. DOI: 10.1016/j.dyepig.2007.02.001. http://dx.doi.org/10.1016/j.dyepig.2007.02.00110.1016/j.dyepig.2007.02.001Search in Google Scholar
[42] Stone, M. T., & Anderson, H. L. (2007). A cyclodextrininsulated anthracene rotaxane with enhanced fluorescence and photostability. Chemical Communications, 2007, 2387–2389. DOI: 10.1039/b700868f. http://dx.doi.org/10.1039/b700868f10.1039/b700868fSearch in Google Scholar PubMed
[43] Tavakoli, H. R., Zamani, H., Ghorbani, M. H., & Etedali Habibabadi, H. (2009). Solvent-free synthesis of 14-aryl(alkyl)-14H-dibenzo[a,j]xanthene, 9-aryl(alkyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-2H-xanthene-1,8-dione and 2-amino-5,6,7,8-tetrahydro-5-oxo-4-aryl-7,7-dimethyl-4Hbenzo-[ b]-pyran derivatives using InCl3 as catalyst. Iranian Journal of Organic Chemistry, 2, 118–126. Search in Google Scholar
[44] Venkatesan, K., Pujari, S. S., Lahoti, R. J., & Srinivasan, K. V. (2008). An efficient synthesis of 1,8-dioxo-octahydroxanthene derivatives promoted by a room temperature ionic liquid at ambient conditions under ultrasound irradiation. Ultrasonics Sonochemistry, 15, 548–553. DOI: 10.1016/j.ultsonch.2007.06.001. http://dx.doi.org/10.1016/j.ultsonch.2007.06.00110.1016/j.ultsonch.2007.06.001Search in Google Scholar PubMed
[45] Veverková, E., & Toma, Š. (2005). Microwave-assisted method for conversion of alcohols into N-Substituted amides using envirocat EPZG® as a catalyst. Chemical Papers, 59, 8–10. Search in Google Scholar
[46] Wedge, T. J., & Hawthorne, M. F. (2003). Multidentate carborane-containing Lewis acids and their chemistry: mercuracarborands. Coordination Chemistry Reviews, 240, 111–128. DOI: 10.1016/s0010-8545(02)00259-x. http://dx.doi.org/10.1016/S0010-8545(02)00259-X10.1016/S0010-8545(02)00259-XSearch in Google Scholar
[47] Zhang, Z. H., & Lui, Y. H. (2008). Antimony trichloride/SiO2 promoted synthesis of 9-ary-3,4,5,6,7,9-hexahydroxanthene-1,8-diones. Catalysis Communications, 9, 1715–1719. DOI: 10.1016/j.catcom.2008.01.031. http://dx.doi.org/10.1016/j.catcom.2008.01.03110.1016/j.catcom.2008.01.031Search in Google Scholar
[48] Zolfigol, M. A. (2001). Silica sulfuric acid/NaNO2 as a novel heterogeneous system for production of thionitrites and disulfides under mild conditions. Tetrahedron, 57, 9509–9511. DOI: 10.1016/s0040-4020(01)00960-7. http://dx.doi.org/10.1016/S0040-4020(01)00960-710.1016/S0040-4020(01)00960-7Search in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Characterisation of VOC composition of Slovak monofloral honeys by GC×GC-TOF-MS
- Combustion-derived CdO nanopowder as a heterogeneous basic catalyst for efficient synthesis of sulfonamides from aromatic amines using p-toluenesulfonyl chloride
- Molybdate sulfonic acid: preparation, characterization, and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis
- Enantioselective extraction of hydrophilic 2-chloromandelic acid enantiomers by hydroxypropyl-β-cyclodextrin: experiments and modeling
- Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures
- Improvement of aquatic pollutant partition coefficient correlations using 1D molecular descriptors — chlorobenzene case study
- Mercury characterisation in urban particulate matter
- Thermal decomposition of lanthanide(III) complexes of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand
- Effect of hyamine on electrochemical behaviour of brass alloy in HNO3 solution
- Calorimetric determination of the effect of additives on cement hydration process
- Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads
- Facile synthesis of 3-substituted quinazoline-2,4-dione and 2,3-di-substituted quinazolinone derivatives
- Virtual screening of imidazole analogs as potential hepatitis C virus NS5B polymerase inhibitors
- A new phenanthroindolizidine alkaloid from Tylophora indica
Articles in the same Issue
- Characterisation of VOC composition of Slovak monofloral honeys by GC×GC-TOF-MS
- Combustion-derived CdO nanopowder as a heterogeneous basic catalyst for efficient synthesis of sulfonamides from aromatic amines using p-toluenesulfonyl chloride
- Molybdate sulfonic acid: preparation, characterization, and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis
- Enantioselective extraction of hydrophilic 2-chloromandelic acid enantiomers by hydroxypropyl-β-cyclodextrin: experiments and modeling
- Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures
- Improvement of aquatic pollutant partition coefficient correlations using 1D molecular descriptors — chlorobenzene case study
- Mercury characterisation in urban particulate matter
- Thermal decomposition of lanthanide(III) complexes of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand
- Effect of hyamine on electrochemical behaviour of brass alloy in HNO3 solution
- Calorimetric determination of the effect of additives on cement hydration process
- Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads
- Facile synthesis of 3-substituted quinazoline-2,4-dione and 2,3-di-substituted quinazolinone derivatives
- Virtual screening of imidazole analogs as potential hepatitis C virus NS5B polymerase inhibitors
- A new phenanthroindolizidine alkaloid from Tylophora indica