Startseite Improvement of aquatic pollutant partition coefficient correlations using 1D molecular descriptors — chlorobenzene case study
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Improvement of aquatic pollutant partition coefficient correlations using 1D molecular descriptors — chlorobenzene case study

  • Cristina Maria EMAIL logo , Carmen Tociu und Gheorghe Maria
Veröffentlicht/Copyright: 30. November 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Partition coefficients between environmental compartments are essential parameters in any predictive models on pollutants’ fate in various emission scenarios. When sufficient experimental data are not available, empirical algebraic models are capable of predicting the pollutant partitioning characteristics based on bulk physico-chemical properties or various molecular structural features. When the use of sophisticated rules based on detailed 2D–3D molecular descriptors is not available as a quick option, inexpensive, simple correlations based solely on octanol-1-ol (octanol)-water partition coefficients (K ow) are extensively employed. The present study investigates enhancing the adequacy of such hydrophobicity-based models by adding simple 1D descriptors, readily identifiable by inspecting the substance structure (i.e. the number of chlorine atoms bound to aromatic rings, or the number of aromatic 5- or 6-atom rings, etc.), in addition to the pollutant’s solubility in water. Exemplification is made for predicting the water-biota (fish)-sediment partition coefficients for chlorobenzenes (CBz).

[1] American Society for Testing and Materials (1984). Standard practice for conducting bioconcentration test with fishes and salt-water bi-valve mollusk. ASTM E-1022-84. West Conshohocken, PA, USA. Suche in Google Scholar

[2] American Society for Testing and Materials (2001). Standard test methods for determining a sorption constant (Koc) for an organic chemical in soil and sediments. ASTM E-1195-01. West Conshohocken, PA, USA. Suche in Google Scholar

[3] Axelman, J., Broman, D., Näf, C., & Pettersen, H. (1995). Compound dependence of the relationship log Kow and log BCFL. A comparison between chlorobenzenes (CBs) for rainbow trout and polycyclic aromatic hydrocarbons (PAHs) for Daphnia. Environmental Science and Pollution Research, 2, 33–36. DOI: 10.1007/bf02987509. http://dx.doi.org/10.1007/BF0298750910.1007/BF02987509Suche in Google Scholar

[4] Bahadur, N. P., Shiu, W. Y., Boocock, D. G. B., & Mackay, D. (1997). Temperature dependence of octanol-water partition coefficient for selected chlorobenzenes. Journal of Chemical & Engineering Data, 42, 685–688. DOI: 10.1021/je970020p. http://dx.doi.org/10.1021/je970020p10.1021/je970020pSuche in Google Scholar

[5] Barber, M. C. (2003). A review and comparison of models for predicting dynamic chemical bioconcentration in fish. Environmental Toxicology and Chemistry, 22, 1963–1992. DOI: 10.1897/02-468. http://dx.doi.org/10.1897/02-46810.1897/02-468Suche in Google Scholar

[6] Bates, D. M., & Watts, D. G. (1988). Nonlinear regression analysis and its applications. New York, NY, USA: Wiley. http://dx.doi.org/10.1002/978047031675710.1002/9780470316757Suche in Google Scholar

[7] Chiriac, A., Ciubotaru, D., & Simon, Z. (1996). Relaţii cantitative structură cimică — activitate biologică (QSAR). Timişoara, Romania: Mirton Publ. Suche in Google Scholar

[8] Djohan, D., Yu, Q., & Connell, D. W. (2005). Partition isotherms of chlorobenzenes in a sediment-water system. Water Air, & Soil Pollution, 161, 157–173. DOI: 10.1007/s11270-005-2993-8. http://dx.doi.org/10.1007/s11270-005-2993-810.1007/s11270-005-2993-8Suche in Google Scholar

[9] Devillers, J., Bintein, S., & Domine, D. (1996). Comparison of BCF models based on log P. Chemosphere, 33, 1047–1065. DOI: 10.1016/0045-6535(96)00246-9. http://dx.doi.org/10.1016/0045-6535(96)00246-910.1016/0045-6535(96)00246-9Suche in Google Scholar

[10] Gramatica, P., Giani, E., & Papa, E. (2007). Statistical external validation and consensus modeling: A QSPR case study for Koc prediction. Journal of Molecular Graphics and Modelling, 25, 755–766. DOI: 10.1016/j.jmgm.2006.06.005. http://dx.doi.org/10.1016/j.jmgm.2006.06.00510.1016/j.jmgm.2006.06.005Suche in Google Scholar

[11] Hester, R. E., & Harrison, R. M. (1996). Chlorinated organic micropollutants. Cambridge, UK: The Royal Society of Chemistry, Thomas Graham House. Suche in Google Scholar

[12] Mackay, D. (1982). Correlation of bioconcentration factors. Environmental Sciience & Technology, 16, 274–278. DOI: 10.1021/es00099a008. http://dx.doi.org/10.1021/es00099a00810.1021/es00099a008Suche in Google Scholar

[13] Mackay, D. (2001). Multimedia environmental models. The fugacity approach. Boca Raton, FL, USA: CRC Press. http://dx.doi.org/10.1201/978142003254310.1201/9781420032543Suche in Google Scholar

[14] Mackay, D., & Fraser, A. (2000). Bioaccumulation of persistent organic chemicals: mechanisms and models. Environmental Pollution, 110, 375–391. DOI: 10.1016/s0269-7491(00)00162-7. http://dx.doi.org/10.1016/S0269-7491(00)00162-710.1016/S0269-7491(00)00162-7Suche in Google Scholar

[15] Maria, G. (2004). A review of algorithms and trends in kinetic model identification for chemical and biochemical systems. Chemical and Biochemical Engineering Quarterly, 18, 195–222. Suche in Google Scholar

[16] Maria, G., & Rippin, D. W. T. (1993). Note concerning two techniques for complex kinetic pathway analysis. Chemical Engineering Science, 48, 3855–3864. DOI: 10.1016/0009-2509(93)80228-i. http://dx.doi.org/10.1016/0009-2509(93)80228-I10.1016/0009-2509(93)80228-ISuche in Google Scholar

[17] Maria, G., & Maria, C. (2006). Evaluation of risk zones over a river pathway, downstream a release point, under seasonal pollutant biodegradability. Chemical and Biochemical Engineering Quarterly, 20, 333–342. Suche in Google Scholar

[18] Maria, C., & Maria, G. (2008). Prediction of dispersion and bioaccumulation of chlorinated benzene pollutants in a river section for a low level of discharge. Revista de Chimie, 59, 1122–1131. 10.37358/RC.08.10.1981Suche in Google Scholar

[19] Maria, G., & Maria, C. (2009). Bioaccumulation dynamics of a PCB low-level discharge in a riverine pathway downstream the release point. Chemical and Biochemical Engineering Quarterly, 23, 121–134. Suche in Google Scholar

[20] MathWorks (2002). Statistics toolbox for use with Matlab. User’s guide (Version 4). Natick, MA, USA: MathWorks, Inc. Retreived July 15, 2012, from http://www.mathworks.com/help/releases/R13sp2/pdfdoc/stats/stats.pdf Suche in Google Scholar

[21] McCarty, L. S., Dixon, D. G., Ozburn, G. W., & Smith, A. D. (1992). Toxicokinetic modeling of mixtures of organic chemicals. Environmental Toxicology and Chemistry, 11, 1037–1047. DOI: 10.1002/etc.5620110716. http://dx.doi.org/10.1002/etc.562011071610.1002/etc.5620110716Suche in Google Scholar

[22] Merck (2007). ChemDAT Merck database, München, Germany: Merck. Suche in Google Scholar

[23] Middleton, G. V. (2000). Data analysis in the Earth sciences using Matlab. New Jersey, NJ, USA: Prentice Hall. Suche in Google Scholar

[24] SPAWAR Systems Center (2006). Ex-ORISKANY artificial reef project. San Diego, CA, USA: Space and Naval Warfare Systems Center. Suche in Google Scholar

[25] NRCG (2001). Report on hydrological (pollutant dispersion) models. Petten, The Netherlands: Nuclear Research & Consultancy Group. Suche in Google Scholar

[26] OECD (1996). OECD guidelines for the testing of chemicals. Bioconcentration: Flow-through fish test. 305. Paris, France. Suche in Google Scholar

[27] Papa, E., Dearden, J. C., & Gramatica, P. (2007). Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors. Chemosphere, 67, 351–358. DOI: 10.1016/j.chemosphere.2006.09.079. http://dx.doi.org/10.1016/j.chemosphere.2006.09.07910.1016/j.chemosphere.2006.09.079Suche in Google Scholar PubMed

[28] Ramaswami, A., Milford, J. B., & Small, M. J. (2005). Integrated environmental modelling. Pollutant transport, fate, and risk in the environment. Hoboken, NJ, USA: Wiley. Suche in Google Scholar

[29] Shiu, W. Y., Wania, F., Hung, H., & Mackay, D. (1997). Temperature dependence of aqueous solubility of selected chlorobenzenes, polychlorinated biphenyls, and dibenzofuran. Journal of Chemical & Engineering Data, 42, 293–297. DOI: 10.1021/je960299u. http://dx.doi.org/10.1021/je960299u10.1021/je960299uSuche in Google Scholar

[30] Sigma-Aldrich (2010). Safety data sheet. Technical services. Retrieved July 20, 2012, from http://www.sigmaaldrich.com/catalog/AdvancedSearchPage.do Suche in Google Scholar

[31] TOXNET (2011). Hazardous substances data bank (HSDB). Retrieved December 10, 2011, from http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB Suche in Google Scholar

[32] University of Akron (2010). The chemical database. Retrieved July 15, 2012, from 〈http://ull.chemistry.uakron.edu/erd/〉 Suche in Google Scholar

[33] US EPA (2011). Soil screening guidance: Fact sheet. EPA/540/F-95/041. Washington, DC, USA: US Environmental Protection Agency. Suche in Google Scholar

[34] van Leeuwen, C. J., & Vermeire, T. G. (2007). Risk assessment of chemicals: An introduction. Dordrecht, The Netherlands: Springer. http://dx.doi.org/10.1007/978-1-4020-6102-810.1007/978-1-4020-6102-8Suche in Google Scholar

[35] Van Wijk, D., Thompson, R. S., De Rooij, C., Garny, V., Lecloux, A., & Kanne, R. (2004). 1,2-dichlorobenzene marine risk assessment with special reference to the Osparcom region: North Sea. Environmental Monitoring and Assessment, 97, 87–102. DOI: 10.1023/b:emas.0000033043.73470.98. http://dx.doi.org/10.1023/B:EMAS.0000033043.73470.9810.1023/B:EMAS.0000033043.73470.98Suche in Google Scholar

[36] Verloop, A., Hoogenstraaten, W., & Tipker, J. (1976). Development and application of new steric substituent parameters in drug design. In E. J. Ariens (Ed.), Drug design (pp. 165–207). New York, NY, USA: Academic Press. Suche in Google Scholar

[37] Verschueren, K. (2001). Handbook of environmental data on organic chemicals. New York, NY, USA: Wiley. Suche in Google Scholar

Published Online: 2012-11-30
Published in Print: 2013-2-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0257-9/html
Button zum nach oben scrollen