Abstract
A five-step sequential extraction procedure was proposed in order to assess the distribution of mercury (Hg) forms in urban particulate matter (PM): exchangeable, HCl-soluble, organic-bound, elemental and other slightly soluble Hg species, mercury(II) sulphide (HgS), and residual Hg. This process was applied to the analysis of urban dust samples collected at locations in Prague (Czech Republic) with high traffic density. In addition to sequential extractions, thermal desorption analysis was performed. The differences in Hg concentrations between untreated and thermally treated samples were indicated as the thermally releasable amount of Hg. For the study of PM-adsorbing capacity, Hg vapours were passed through the samples as long as the enrichment of materials was observed. The retained elemental Hg was readily released by thermal desorption. All Hg analyses were based on the highly sensitive pyrolysis technique of atomic absorption spectrometry using the mercury analyser AMA-254.
[1] Bloom, N. S., Preus, E., Katon, J., & Hiltner, M. (2003). Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Analytica Chimica Acta, 479, 233–248. DOI: 10.1016/s0003-2670(02)01550-7. http://dx.doi.org/10.1016/S0003-2670(02)01550-710.1016/S0003-2670(02)01550-7Suche in Google Scholar
[2] Downs, S. G., MacLeod, C. L., & Lester, J. N. (1998). Mercury in precipitation and its relation to bioaccumulation in fish: A literature review. Water, Air, and Soil Pollution, 108, 149–187. DOI: 10.1023/a:1005023916816. http://dx.doi.org/10.1023/A:100502391681610.1023/A:1005023916816Suche in Google Scholar
[3] Fernández-Martínez, R., & Rucandio, M. I. (2003). Study of extraction conditions for the quantitative determination of Hg bound to sulfide in soils from Almaden (Spain). Analytical and Bioanalytical Chemistry, 375, 1089–1096. DOI: 10.1007/s00216-002-1712-1. 10.1007/s00216-002-1712-1Suche in Google Scholar
[4] Hall, B. (1995). The gas phase oxidation of elemental mercury by ozone. Water, Air, and Soil Pollution, 80, 301–315. DOI: 10.1007/bf01189680. http://dx.doi.org/10.1007/BF0118968010.1007/BF01189680Suche in Google Scholar
[5] Hall, B., Schager, P., & Lindqvist, O. (1991). Chemical reactions of mercury in combustion flue gases. Water, Air, and Soil Pollution, 56, 3–14. DOI: 10.1007/bf00342256. http://dx.doi.org/10.1007/BF0034225610.1007/BF00342256Suche in Google Scholar
[6] Karlsson, H. L., Nilsson, L., & Möller, L. (2005). Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells. Chemical Research in Toxicology, 18, 19–23. DOI: 10.1021/tx049723c. http://dx.doi.org/10.1021/tx049723c10.1021/tx049723cSuche in Google Scholar
[7] Lechler, P. J., Miller, J. R., Hsu, L. C., & Desilets, M. O. (1997). Mercury mobility at the Carson River Superfund Site, west-central Nevada, USA: interpretation of mercury speciation data in mill tailings, soils, and sediments. Journal of Geochemical Exploration, 58, 259–267. DOI: 10.1016/s0375-6742(96)00071-4. http://dx.doi.org/10.1016/S0375-6742(96)00071-410.1016/S0375-6742(96)00071-4Suche in Google Scholar
[8] Lin, C. J., & Pehkonen, S. O. (1999). The chemistry of atmospheric mercury: a review. Atmospheric Environment, 33, 2067–2079. DOI: 10.1016/s1352-2310(98)00387-2. http://dx.doi.org/10.1016/S1352-2310(98)00387-210.1016/S1352-2310(98)00387-2Suche in Google Scholar
[9] Liu, G., Cabrera, J., Allen, M., & Cai, Y. (2006). Mercury characterization in a soil sample collected nearby the DOE Oak Ridge Reservation utilizing sequential extraction and thermal desorption method. Science of the Total Environment, 369, 384–92. DOI: 10.1016/j.scitotenv.2006.07.011. http://dx.doi.org/10.1016/j.scitotenv.2006.07.01110.1016/j.scitotenv.2006.07.011Suche in Google Scholar PubMed
[10] López-Antón, M. A., Abad-Valle, P., Díaz-Somoano, M., Suárez-Ruiz, I., & Martínez-Tarazona, M. R. (2009). The influence of carbon particle type in fly ashes on mercury adsorption. Fuel, 88, 1194–1200. DOI: 10.1016/j.fuel.2007.07.029. http://dx.doi.org/10.1016/j.fuel.2007.07.02910.1016/j.fuel.2007.07.029Suche in Google Scholar
[11] Pacyna, E. G., Pacyna, J. M., & Pirrone, N. (2001). European emissions of atmospheric mercury from anthropogenic sources in 1995. Atmospheric Environment, 35, 2987–2996. DOI: 10.1016/s1352-2310(01)00102-9. http://dx.doi.org/10.1016/S1352-2310(01)00102-910.1016/S1352-2310(01)00102-9Suche in Google Scholar
[12] Park, K. S., Seo, Y. C., Lee, S. J., & Lee, J. H. (2008). Emission and speciation of mercury from various combustion sources. Powder Technology, 180, 151–156. DOI: 10.1016/j.powtec.2007.03.006. http://dx.doi.org/10.1016/j.powtec.2007.03.00610.1016/j.powtec.2007.03.006Suche in Google Scholar
[13] Pinto, J. P. (2000). Sources, composition and abundances of atmospheric fine and coarse particles. Journal of Aerosol Science, 31(Suppl. 1), S108–S109. DOI: 10.1016/s0021-8502(00)90115-0. http://dx.doi.org/10.1016/S0021-8502(00)90115-010.1016/S0021-8502(00)90115-0Suche in Google Scholar
[14] Schroeder, W. H., & Munthe, J. (1998). Atmospheric mercury—an overview. Atmospheric Environment, 32, 809–822. DOI: 10.1016/s1352-2310(97)00293-8. http://dx.doi.org/10.1016/S1352-2310(97)00293-810.1016/S1352-2310(97)00293-8Suche in Google Scholar
[15] Seigneur, C., Abeck, H., Chia, G., Reinhard, M., Bloom, N. S., Prestbo, E., & Saxena, P. (1998). Mercury adsorption to elemental carbon (soot) particles and atmospheric particulate matter. Atmospheric Environment, 32, 2649–2657. DOI: 10.1016/s1352-2310(97)00415-9. http://dx.doi.org/10.1016/S1352-2310(97)00415-910.1016/S1352-2310(97)00415-9Suche in Google Scholar
[16] Sillanpää, M., Hillamo, R., Kerminen, V. M., Pakkanen, T., Salonen, R., Pennanen, A., Aarnio, P., & Koskentalo, T. (2000). Chemical composition and mass balance of an urban aerosol during various seasons. Journal of Aerosol Science, 31(Suppl. 1), S309–S310. DOI: 10.1016/s0021-8502(00)90319-7. http://dx.doi.org/10.1016/S0021-8502(00)90319-710.1016/S0021-8502(00)90319-7Suche in Google Scholar
[17] Wang, D., Shi, X., & Wei, S. (2003). Accumulation and transformation of atmospheric mercury in soil. The Science of the Total Evnironment, 304, 209–214. DOI: 10.1016/s0048-9697(02)00569-7. http://dx.doi.org/10.1016/S0048-9697(02)00569-710.1016/S0048-9697(02)00569-7Suche in Google Scholar
[18] Xiu, G., Jin, Q., Zhang, D., Shi, S., Huang, X., Zhang, W., Bao, L., Gao, P., & Chen, B. (2005). Characterization of size-fractionated particulate mercury in Shanghai ambient air. Atmospheric Environment, 39, 419–427. DOI: 10.1016/j.atmosenv.2004.09.046. http://dx.doi.org/10.1016/j.atmosenv.2004.09.04610.1016/j.atmosenv.2004.09.046Suche in Google Scholar
[19] Xiu, G., Cai, J., Zhang, W., Zhang, D., Büeler, A., Lee, S., Shen, Y., Xu, L., Huang, X., & Zhang, P. (2009). Speciated mercury in size-fractionated particles in Shanghai ambient air. Atmospheric Environment, 43, 3145–3154. DOI: 10.1016/j.atmosenv.2008.07.044. http://dx.doi.org/10.1016/j.atmosenv.2008.07.04410.1016/j.atmosenv.2008.07.044Suche in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Characterisation of VOC composition of Slovak monofloral honeys by GC×GC-TOF-MS
- Combustion-derived CdO nanopowder as a heterogeneous basic catalyst for efficient synthesis of sulfonamides from aromatic amines using p-toluenesulfonyl chloride
- Molybdate sulfonic acid: preparation, characterization, and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis
- Enantioselective extraction of hydrophilic 2-chloromandelic acid enantiomers by hydroxypropyl-β-cyclodextrin: experiments and modeling
- Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures
- Improvement of aquatic pollutant partition coefficient correlations using 1D molecular descriptors — chlorobenzene case study
- Mercury characterisation in urban particulate matter
- Thermal decomposition of lanthanide(III) complexes of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand
- Effect of hyamine on electrochemical behaviour of brass alloy in HNO3 solution
- Calorimetric determination of the effect of additives on cement hydration process
- Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads
- Facile synthesis of 3-substituted quinazoline-2,4-dione and 2,3-di-substituted quinazolinone derivatives
- Virtual screening of imidazole analogs as potential hepatitis C virus NS5B polymerase inhibitors
- A new phenanthroindolizidine alkaloid from Tylophora indica
Artikel in diesem Heft
- Characterisation of VOC composition of Slovak monofloral honeys by GC×GC-TOF-MS
- Combustion-derived CdO nanopowder as a heterogeneous basic catalyst for efficient synthesis of sulfonamides from aromatic amines using p-toluenesulfonyl chloride
- Molybdate sulfonic acid: preparation, characterization, and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis
- Enantioselective extraction of hydrophilic 2-chloromandelic acid enantiomers by hydroxypropyl-β-cyclodextrin: experiments and modeling
- Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures
- Improvement of aquatic pollutant partition coefficient correlations using 1D molecular descriptors — chlorobenzene case study
- Mercury characterisation in urban particulate matter
- Thermal decomposition of lanthanide(III) complexes of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand
- Effect of hyamine on electrochemical behaviour of brass alloy in HNO3 solution
- Calorimetric determination of the effect of additives on cement hydration process
- Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads
- Facile synthesis of 3-substituted quinazoline-2,4-dione and 2,3-di-substituted quinazolinone derivatives
- Virtual screening of imidazole analogs as potential hepatitis C virus NS5B polymerase inhibitors
- A new phenanthroindolizidine alkaloid from Tylophora indica