Home Talaromyces flavus and its metabolites
Article
Licensed
Unlicensed Requires Authentication

Talaromyces flavus and its metabolites

  • Bohumil Proksa EMAIL logo
Published/Copyright: September 23, 2010
Become an author with De Gruyter Brill

Abstract

This manuscript presents an overview of the research performed on Talaromyces flavus, a microorganism remarkable for its secondary metabolites with unique biological activities, enzymes applicable in the synthesis of saccharides, preparation of chiral building blocks or biotransformations, and for its application in pest biocontrol.

[1] Acker, T. E., Brenneisen, P. E., & Tanenbaum, S. W. (1966). Isolation, structure, and radiochemical synthesis of 3,6-dimethyl-4-hydroxy-2-pyrone. Journal of the American Chemical Society, 88, 834–837. DOI: 10.1021/ja00956a041. http://dx.doi.org/10.1021/ja00956a04110.1021/ja00956a041Search in Google Scholar

[2] Adamcová, J., Proksa, B., & Fuska, J. (1992). Regulation of biosynthesis of vermiculin and vermistatin in Penicillium vermiculatum. Folia Microbiologica, 37, 50–52. DOI: 10.1007/BF02814580. http://dx.doi.org/10.1007/BF0281458010.1007/BF02814580Search in Google Scholar

[3] Arai, M., Tomoda, H., Okuda, T., Wang, H., Tabata, N., Masuma, R., Yamaguchi, Y., & Omura, S. (2002). Funiconerelated compounds, potentiators of antifungal miconazole activity, produced by Talaromyces flavus FKI-0076. Journal of Antibiotics, 55, 172–180. 10.7164/antibiotics.55.172Search in Google Scholar

[4] Augustín, J., Kuniak, L., Zemek, J., & Marvanová, L. (1983). Czechoslovak Patent No. 205,317. Prague: Industrial Property Office. Search in Google Scholar

[5] Ayer, W. A., & Racok, J. S. (1990a). The metabolites of Talaromyces flavus. Part 1. Metabolites of organic extract. Canadian Journal of Chemistry, 68, 2085–2094. DOI: 10.1139/v90-318. http://dx.doi.org/10.1139/v90-31810.1139/v90-318Search in Google Scholar

[6] Ayer, W. A., & Racok, J. S. (1990b). The metabolites of Talaromyces flavus. Part 2. Biological activity and biosynthetic studies. Canadian Journal of Chemistry, 68, 2095–2101. DOI: 10.1139/v90-319. http://dx.doi.org/10.1139/v90-31910.1139/v90-319Search in Google Scholar

[7] Barros Cota, B., Rosa, L. H., Basques Caligiorne, R., Teles Rabello, A. L., Almeida Alves, T. M., Rosa, C. A., Zani, C. L. (2008). Altenusin, a biphenyl isolated from the endophytic fungus Alternaria sp., inhibits trypanothione reductase from Trypanosoma cruzi. FEMS Microbiology Letters, 285, 177–182. DOI: 10.1111/j.1574-6968.2008.01221.x. http://dx.doi.org/10.1111/j.1574-6968.2008.01221.x10.1111/j.1574-6968.2008.01221.xSearch in Google Scholar

[8] Benjamin, C. R. (1955). Ascocarps of Aspergillus and Penicillium. Mycologia, 47, 669–687. DOI: 10.2307/3755578. http://dx.doi.org/10.2307/375557810.2307/3755578Search in Google Scholar

[9] Berbee, M. L., Yoshimura, A., Sugiyama, J., & Taylor, J. W. (1995). Is Penicillium monophyletic? An evaluation of phylogeny in the family Trichocomaceae from 18S, 5.8S and ITS ribosomal DNA sequence data. Mycologia, 87, 210–222. DOI: 10.2307/3760907. http://dx.doi.org/10.2307/376090710.2307/3760907Search in Google Scholar

[10] Beuchat, L. R. (1988). Influence of organic acids on heat resistance characteristics of Talaromyces flavus ascospores. International Journal of Food Microbiology, 6, 97–105. DOI: 10.1016/0168-1605(88)90046-3. http://dx.doi.org/10.1016/0168-1605(88)90046-310.1016/0168-1605(88)90046-3Search in Google Scholar

[11] Biffi Crotti, L., Polisel Jabor, V. A., Dos Santos Cunha Chellegatti, M. A., Vieira Fonseca, M. J., Said, S. (1999). Studies of pectic enzymes produced by Talaromyces flavus in submerged and solid substrate cultures. Journal of Basic Microbiology, 39, 227–235. DOI: 10.1002/(SICI)1521-4028(199909)39:4〈227::AId-JOBM227〉3.0.CO;2–8. http://dx.doi.org/10.1002/(SICI)1521-4028(199909)39:4<227::AID-JOBM227>3.0.CO;2-810.1002/(SICI)1521-4028(199909)39:4<227::AID-JOBM227>3.0.CO;2-8Search in Google Scholar

[12] Birkinshaw, J. H., & Raistrick, H. (1933). LIII. Studies in the biochemistry of micro-organisms. XXVII. The production of luteic acid from various sources of carbon by Penicillium luteum Zukal. Biochemical Journal, 27, 370–375. 10.1042/bj0270370Search in Google Scholar

[13] Bojarová, P., Křenek, K., Kuzma, M., Petrásková, L., Bezouška, K., Namdjou, D.-J., Elling, L., & Křen, V. (2008). N-Acetylhexosamine triad in one molecule: Chemoenzymatic introduction of 2-acetamido-2-deoxy-β-d-galactopyranosyluronic acid residue into a complex oligosaccharide. Journal of Molecular Catalysis B: Enzymatic, 50, 69–73. DOI: 10.1016/j.molcatb.2007.09.002. http://dx.doi.org/10.1016/j.molcatb.2007.09.00210.1016/j.molcatb.2007.09.002Search in Google Scholar

[14] Boosalis, M. G. (1956). Effect of soil temperature and greenmanure amendment of unsterilized soil on parasitism of Rhizoctonia solani by Penicillium vermiculatum and Trichoderma sp. Phytopathology, 46, 473–478. Search in Google Scholar

[15] Brauers, G. (2003). Isolation and structure elucidation of new natural products from sponge-associated fungi. Ph.D. thesis. Heinrich-Heine-University, Düsseldorf, Germany. Search in Google Scholar

[16] Brückner, D., Hafner, F.-T., Li, V., Schmeck, C., Telser, J., Vakalopoulos, A., & Wirtz, G. (2005). Dibenzodioxocinones — A new class of CETP inhibitors. Bioorganic & Medicinal Chemistry Letters, 15, 3611–3614 DOI: 10.1016/j.bmcl.2005.05.073. http://dx.doi.org/10.1016/j.bmcl.2005.05.07310.1016/j.bmcl.2005.05.073Search in Google Scholar

[17] Büchi, G., White, J. D., & Wogan, G. N. (1965). The structures of mitorubrin and mitorubrinol. Journal of the American Chemical Society, 87, 3484–3489. DOI: 10.1021/ja01093a036. http://dx.doi.org/10.1021/ja01093a03610.1021/ja01093a036Search in Google Scholar

[18] Chang, J.-M., Oyaizu, H., & Sugiyama, J. (1991). Phylogenetic relationship among eleven selected species of Aspergillus and associated teleomorphic genera estimated from 18S ribosomal RNA partial sequences. The Journal of General and Applied Microbiology, 37, 289–308. DOI: 10.2323/jgam.37.289. http://dx.doi.org/10.2323/jgam.37.28910.2323/jgam.37.289Search in Google Scholar

[19] Chattopadhyay, S. B., & Das Gupta, C. (1959). Arachniotus indicus sp.nov. Transactions of the British Mycological Society, 42, 72–74. DOI: 10.1016/S0007-1536(59)80070-X. http://dx.doi.org/10.1016/S0007-1536(59)80070-X10.1016/S0007-1536(59)80070-XSearch in Google Scholar

[20] Chung, M.-C., Lee, H.-J., Chun, H.-K., & Kho, Y.-H. (1998). Penicillide, a nonpeptide calpain inhibitor, produced by Penicillium sp. F60760. Journal of Microbiology and Biotechnology, 8, 188–190. Search in Google Scholar

[21] Dangeard, P. A. (1907). Recherches sur le développement du périthèce chez les Ascomycètes. Le Botaniste, 10, 176–217. Search in Google Scholar

[22] De Stefano, S., Nicoletti, R., Milone, A., Zambardino, S. (1999). 3-o-Methylfunicone, a fungitoxic metabolite produced by the fungus Penicillium pinophilum. Phytochemistry, 52, 1399–1401. DOI: 10.1016/S0031-9422(99)00320-9. http://dx.doi.org/10.1016/S0031-9422(99)00320-910.1016/S0031-9422(99)00320-9Search in Google Scholar

[23] Demain, A. L., Chemerda, J. M., & White, R. F. (1972). U.S. Patent No. 3,635,795. Washington, D.C.: U.S. Patent and Trademark Office. Search in Google Scholar

[24] Dethoup, T., Manoch, L., Kijjoa, A., Pinto, M., Gales, L., Damas, A. M., Silva, A. M. S., Eaton, G., & Herz, W. (2007). Merodrimanes and other constituents from Talaromyces thailandiasis. Journal of Natural Products, 70, 1200–1202. DOI: 10.1021/np0680578. http://dx.doi.org/10.1021/np068057810.1021/np0680578Search in Google Scholar PubMed

[25] Duo-Chuan, L. I., Chen, S., & Jing, L. U. (2005). Purification and partial characterization of two chitinases from the mycoparasitic fungus Talaromyces flavus. Mycopathologia, 159, 223–229. DOI: 10.1007/s11046-004-9096-8. http://dx.doi.org/10.1007/s11046-004-9096-810.1007/s11046-004-9096-8Search in Google Scholar PubMed

[26] Dutta, B. K. (1981). Studies on some fungi isolated from the rhizosphere of tomato plants and the consequent prospect for control of Verticillium wilt. Plant and Soil, 63, 209–216. DOI: 10.1007/BF02374599. http://dx.doi.org/10.1007/BF0237459910.1007/BF02374599Search in Google Scholar

[27] Fahima, T., & Henis, Y. (1995). Quantitative assessment of the interaction between the antagonistic fungus Talaromyces flavus and the wilt pathogen Verticillium dahliae on eggplant roots. Plant and Soil, 176, 129–137. DOI: 10.1007/BF00017683. http://dx.doi.org/10.1007/BF0001768310.1007/BF00017683Search in Google Scholar

[28] Fahima, T., Madi, L., & Henis, Y. (1992). Ultrastructure and germinability of Verticillium dahliae microsclerotia parasitized by Talaromyces flavus on agar medium and in treated soil. Biocontrol Science and Technology, 2, 69–78. DOI: 10.1080/09583159209355220. http://dx.doi.org/10.1080/0958315920935522010.1080/09583159209355220Search in Google Scholar

[29] Fassatiová, O., & Hartmannová, V. (1971). A finding of the species Talaromyces vermiculatus (Dang.) Benj. in mines in Czechoslovakia. Czech Mycology, 26, 114–115. Search in Google Scholar

[30] Fialová, P., Namdjou, D.-J., Ettrich, R., Přikrylová, J., Křenek, K., Kuzma, M., Elling, L., Bezouška, K., & Křen, V. (2005). Combined application of galactose oxidase and β-N-acetylhexosaminidase in the synthesis of complex immuno-active N-acetyl-d-galactosaminides. Advanced Synthesis and Catalysis, 347, 997–1006. DOI: 10.1002/adsc.200505041. http://dx.doi.org/10.1002/adsc.20050504110.1002/adsc.200505041Search in Google Scholar

[31] Fialová, P., Weignerová, L., Rauvolfová, J., Přikrylov Pišvejcov Křen, V. (2004). Hydrolytic and transglycosylation reactions of N-acyl modified substrates catalyzed by β-N-acetylhexosaminidases. Tetrahedron, 60, 693–701. DOI: 10.1016/j.tet.2003.10.111. http://dx.doi.org/10.1016/j.tet.2003.10.11110.1016/j.tet.2003.10.111Search in Google Scholar

[32] Findlay, J. A., Li, G., Miller, J. D., & Womiloju, T. O. (2003). Insect toxins from spruce endophytes. Canadian Journal of Chemistry, 81, 284–292. DOI: 10.1139/v03-044. http://dx.doi.org/10.1139/v03-04410.1139/v03-044Search in Google Scholar

[33] Fravel, D. R., Davis, J. R., & Sorensen, L. H. (1986). Effect of Talaromyces flavus and metham on Verticillium wilt incidence and potato yield 1984-1985. Biological and Cultural Tests for Control of Plant Diseases, 1, 17. Search in Google Scholar

[34] Fravel, D. R., & Roberts, D. P. (1991). In situ evidence for the role of glucose oxidase in the biocontrol of Verticillium wilt by Talaromyces flavus. Biocontrol Science and Technology, 1, 91–99. DOI: 10.1080/09583159109355189. http://dx.doi.org/10.1080/0958315910935518910.1080/09583159109355189Search in Google Scholar

[35] Freitas, T. P. S., Furtado, N. A. J. C., Bastos, J. K., & Said, S. (2002). Active substances against trypomastigote forms of Trypanosoma cruzi and microorganisms are produced in sequence by Talaromyces flavus. Microbiological Research, 157, 201–206. DOI: 10.1078/0944-5013-00148. http://dx.doi.org/10.1078/0944-5013-0014810.1078/0944-5013-00148Search in Google Scholar PubMed

[36] Frisvad, J. C., Filtenborg, O., Samson, R. A., & Stolk, A. C. (1990). Chemotaxonomy of the genus Talaromyces. Antonie van Leeuwenhoek, 57, 179–189. DOI: 10.1007/BF00403953. http://dx.doi.org/10.1007/BF0040395310.1007/BF00403953Search in Google Scholar PubMed

[37] Fuska, J., Fusková, A., & Nemec, P. (1979a). Vermistatin, an antibiotic with cytotoxic effects, produced from Penicillium vermiculatum. Biologia (Bratislava), 34, 735–739. Search in Google Scholar

[38] Fuska J., Ivanitskaya, L. P., Makukho, L. V., Volkova, L. Ya. (1974a). Effect of the antibiotics vermiculin, PSX-1, bikaverin, and duclauxin isolated from fungi on synthesis of nucleic acids in cells of some tumors. Antibiotiki (Moscow), 19, 890–893. Search in Google Scholar

[39] Fuska, J., Ivanitskaya, L., Horáková, K., & Kuhr, I. (1974b). The cytotoxic effects of a new antibiotic vermiculine. Journal of Antibiotics, 27, 141–142. 10.7164/antibiotics.27.141Search in Google Scholar PubMed

[40] Fuska, J., Jílek, R., & Fusková, A. (1982). Antibiotic and cytotoxic effects of microorganisms isolated from uranium mines in Jáchymov. Biologia (Bratislava), 37, 707–713. Search in Google Scholar

[41] Fuska, J., Nemec, P., & Fusková, A. (1979b). Vermicillin, a new metabolite from Penicillium vermiculatum inhibiting tumor cells in vitro. Journal of Antibiotics, 32, 667–669. 10.7164/antibiotics.32.667Search in Google Scholar PubMed

[42] Fuska, J., Nemec, P., & Kuhr, I. (1972). Vermiculine, a new antiprotozoal antibiotic from Penicillium vermiculatum. Journal of Antibiotics, 25, 208–211. 10.7164/antibiotics.25.208Search in Google Scholar PubMed

[43] Fuska, J., Proksa, B., Khandlová, A., & Šturdíková, M. (1987). Microbial transformation of cardioglycosides. Applied Microbiology and Biotechnology, 26, 313–317. DOI: 10.1007/BF00256660. http://dx.doi.org/10.1007/BF0025666010.1007/BF00256660Search in Google Scholar

[44] Fuska, J., Proksa, B., Uhrín, D., Marvanová, L., & Šturdíková M. (1991). Biosynthesis of dehydrolatenusin by Talaromyces flavus. Acta Biotechnologica, 11, 73–76. DOI: 10.1002/abio.370110121. http://dx.doi.org/10.1002/abio.37011012110.1002/abio.370110121Search in Google Scholar

[45] Fuska, J., Uhrín, D., Proksa, B., Votický, Z., & Ruppeldt, J. (1986). The structure of vermistatin, a new metabolite from Penicillium vermiculatum. Journal of Antibiotics, 39, 1605–1608. 10.7164/antibiotics.39.1605Search in Google Scholar PubMed

[46] Fusková, A., Fuska, J., & Kettner, M. (1978). Inhibtion of Tritrichomonas foetus by vermiculine in vitro. Folia Microbiologica, 23, 389–393. DOI: 10.1007/BF02876441. http://dx.doi.org/10.1007/BF0287644110.1007/BF02876441Search in Google Scholar PubMed

[47] Galvez-Mariscal, A., & Lopez-Munguia, A. (1991). Production and characterization of a dextranase from an isolated Paecilomyces lilacinus strain. Applied Microbiology and Biotechnology, 36, 327–331. DOI: 10.1007/BF00208151. http://dx.doi.org/10.1007/BF0020815110.1007/BF00208151Search in Google Scholar

[48] Ghosh, G. R., Orr, G. F., & Kuehn, H. H. (1961). A reevaluation of Arachniotus indicus. Mycologia, 53, 221–227. DOI: 10.2307/3756269. http://dx.doi.org/10.2307/375626910.2307/3756269Search in Google Scholar

[49] Haggag, W. M., Kansoh, A. L., & Aly, A. M. (2006). Proteases from Talaromyces flavus and Trichoderma harzianum: Purification, characterization and antifungal activity against brown spot disease on faba bean. Plant Pathology Bulletin, 15, 231–239. Search in Google Scholar

[50] Hang, Y. D., & Woodams, E. E. (1993). Thermophilic glucoamylase from Talaromyces flavus. Letters in Applied Microbiology, 17, 156–157. DOI: 10.1111/j.1472-765X.1993.tb00383.x. http://dx.doi.org/10.1111/j.1472-765X.1993.tb00383.x10.1111/j.1472-765X.1993.tb00383.xSearch in Google Scholar

[51] Hayashi, K., Hatsutori, N., Donho, M., & Nakajima, H. (1996). Japan Patent No. 08,217,673. Tokyo: Japan Patent Office. Search in Google Scholar

[52] He, J., He, Y., Zhang, J.-Q., & Wei, Y.-H. (2007). Studies on the chemical constituents of Lycopus europaeus L. Jiefangjun Yaoxue Xuebao, 23, 432–433. Search in Google Scholar

[53] Hendlin, D., Stapley, E. O., Jackson, M., Wallick, H., Miller, A. K., Wolf, F. J., Miller, T. W., Chaiet, L., Kahan, F. M., Foltz, E. L., Woodruff, H. B., Mata, J. M., Hernandez, S., & Mochales, S. (1969). Phosphomycin, new antibiotic produced by strain of Streptomyces. Science, 166, 122–123. DOI: 10.1126/science.166.3901.122. http://dx.doi.org/10.1126/science.166.3901.12210.1126/science.166.3901.122Search in Google Scholar PubMed

[54] Horáková, K., Kernáčová, B., Nemec, P., & Fuska, J. (1976). Characterization of the cytotoxic activity of vermiculine. Journal of Antibiotics, 29, 1109–1111. 10.7164/antibiotics.29.1109Search in Google Scholar PubMed

[55] Horáková, L., Nouza, K., Pospíšil, K., Konopásková, E., Klapáčová, J., & Fuska, J. (1980). Immunosuppressive properties of the antibiotics cytostipin and vermiculine. Folia Biologica, 26, 312–326. Search in Google Scholar

[56] Hušáková, L., Herkommerová-Rajnochová, E., Semeňuk, T., Kuzma, M., Rauvolfová, J., Přikrylov Plíhal, O., Bezouška, K., & Křen, V. (2003). Enzymatic discrimination of 2-acetamido-2-deoxy-d-mannopyranose-containing disaccharides using β-N-acetylhexosaminidases. Advanced Synthesis & Catalysis, 345, 735–742. DOI: 1002/adsc.200303002. http://dx.doi.org/10.1002/adsc.20030300210.1002/adsc.200303002Search in Google Scholar

[57] Inglis, G. D., & Kawchuk, L. M. (2002). Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungi. Canadian Journal of Microbiology, 48, 60–70. DOI: 10.1139/w01-130. http://dx.doi.org/10.1139/w01-13010.1139/w01-130Search in Google Scholar

[58] Ishibashi, K., Amao, S., Nii, M., & Kaburagi, H. (1974). German Patent No. 2,408,998. Munich: German Patent and Trade Mark Office. Search in Google Scholar

[59] Jabbar, A., Shresta, A. P., Hasan, C. M., & Rashid, M. A. (1999). Anti-HIV activity of dehydroaltenusin — a metabolite from a Streptomyces sp. Natural Product Sciences, 5, 162–164. Search in Google Scholar

[60] Jiang, S., Li, L., Zhang, D., & Su, T. (2007). China Patent No. 10, 104,825. Beijing: China Intellectual Property Office. Search in Google Scholar

[61] Jones, D., Anderson, H. A., Russell, J. D., Fraser, A. R., & Onions, A. H. S. (1984). Vermiculine, a metabolic product from Talaromyces wortmannii. Transactions of British Mycological Society, 83, 718–721. DOI: 10.1016/S0007-1536(84)80196-5. http://dx.doi.org/10.1016/S0007-1536(84)80196-510.1016/S0007-1536(84)80196-5Search in Google Scholar

[62] Kameda, K., & Namiki, M. (1974). An approach to biogenesis of dehydroaltenusin by enzymic oxidation. Chemistry Letters, 3, 265–266. DOI: 10.1246/cl.1974.265. http://dx.doi.org/10.1246/cl.1974.26510.1246/cl.1974.265Search in Google Scholar

[63] Kametani, S., Kojima-Yuasa, A., Kikuzaki, H., Kennedy, D. O., Honzawa, M., & Matsui-Yuasa, I. (2007). Chemical constituents of cape aloe and their synergistic growth-inhibiting effect on Ehrlich ascites tumor cells. Bioscience, Biotechnology, and Biochemistry, 71, 1220–1229. DOI: 10.1271/bbb.60659. http://dx.doi.org/10.1271/bbb.6065910.1271/bbb.60659Search in Google Scholar

[64] Kamisuki, S., Murakami, C., Ohta, K., Yoshida, H., Sugawara, F., Sakaguchi, K., & Mizushina, Y. (2002). Actions of derivatives of dehydroaltenusin, a new mammalian DNA polymerase α-specific inhibitor. Biochemical Pharmacology, 63, 421–427. DOI: 10.1016/S0006-2952(01)00912-1. http://dx.doi.org/10.1016/S0006-2952(01)00912-110.1016/S0006-2952(01)00912-1Search in Google Scholar

[65] Kamisuki, S., Takahashi, S., Mizushina, Y., Sakaguchi, K., Nakata, T., & Sugawara, F. (2004). Precise structural elucidation of dehydroaltenusin, a specific inhibitor of mammalian DNA polymerase α. Bioorganic & Medicinal Chemistry, 12, 5355–5359. DOI: 10.1016/j.bmc.2004.07.047. http://dx.doi.org/10.1016/j.bmc.2004.07.04710.1016/j.bmc.2004.07.047Search in Google Scholar PubMed

[66] Kamyschko, O. P. (1962). Penicillium liani. Notulae Systematicae e Sectione Cryptogamica Instituti Botanici Academiae Scientiarum URSS, 15, 86. Search in Google Scholar

[67] Kawamura, H., Kaneko, T., Koshino, H., Esumi, Y., Uzawa, J., & Sugawara, F. (2000). Penicillides from Penicillium sp. isolated from Taxus cuspidata. Natural Products Research, 14, 477–484. DOI: 10.1080/10575630008043788. http://dx.doi.org/10.1080/1057563000804378810.1080/10575630008043788Search in Google Scholar

[68] Kim, K. K., Fravel, D. R., & Papavizas, G. C. (1990a). Production, purification, and properties of glucose oxidase from the biocontrol fungus Talaromyces flavus. Canadian Journal of Microbiology, 36, 199–205. DOI: 10.1139/m90-034. http://dx.doi.org/10.1139/m90-03410.1139/m90-034Search in Google Scholar

[69] Kim, K. K.-A., Fravel, D. R., & Papavizas, G. (1990b). Glucose oxidase as the antifungal principle of talaron from Talaromyces flavus. Canadian Journal of Microbiology, 36, 760–764. DOI: 10.1139/m90-131. http://dx.doi.org/10.1139/m90-13110.1139/m90-131Search in Google Scholar PubMed

[70] Kim, K. K., Fravel, D. R., & Papavizas, G. C. (1988). Identification of a metabolite produced by Talaromyces flavus as glucose oxidase and its role in the biocontrol of Verticillium dahliae. Phytopathology, 78, 488–492. DOI: 10.1094/Phyto-78-488. http://dx.doi.org/10.1094/Phyto-78-48810.1094/Phyto-78-488Search in Google Scholar

[71] Kimura, Y., Yoshinari, T., Koshino, H., Fujioka, S., Okada, K., & Shimada, A. (2007). Rubralactone, rubralides A, B and C and rubramin produced by Penicillium rubrum. Bioscience, Biotechnology, and Biochemistry, 71, 1896–1901. DOI: 10.1271/bbb.70112. http://dx.doi.org/10.1271/bbb.7011210.1271/bbb.70112Search in Google Scholar

[72] Kimura, Y., Yoshinari, T., Shimada, A., & Hamasaki, T. (1995). Isofunicone, a pollen growth inhibitor produced by the fungus, Penicillium sp. Phytochemistry, 40, 629–631. DOI: 10.1016/0031-9422(95)00410-9. http://dx.doi.org/10.1016/0031-9422(95)00410-910.1016/0031-9422(95)00410-9Search in Google Scholar

[73] King, A. D. (1997). Heat resistance of Talaromyces flavus ascospores as determined by a two phase slug flow heat exchanger. International Journal of Food Microbiology, 35, 147–51. DOI: 10.1016/S0168-1605(96)01213-5. http://dx.doi.org/10.1016/S0168-1605(96)01213-510.1016/S0168-1605(96)01213-5Search in Google Scholar

[74] Klöcker, A. (1902). Gymnoascus flavus n.sp. Hedwigia, 41, 80–83. Search in Google Scholar

[75] Kogan, G., Matulová, M., & Michalková, E. (2002). Extracellular polysaccharides of Penicillium vermiculatum. Zeitschrift für Naturforschung C, 57, 452–458. 10.1515/znc-2002-5-609Search in Google Scholar

[76] Komai, S., Hosoe, T., Itabashi, T., Nozawa, K., Yaguchi, T., Fukushima, K., & Kawai, K. (2006). New penicillide derivatives isolated from Penicillium simplicissimum. Journal of Natural Medicines, 60, 185–190. DOI: 10.1007/s11418-005-0028-9. http://dx.doi.org/10.1007/s11418-005-0028-910.1007/s11418-005-0028-9Search in Google Scholar

[77] Komai, S., Hosoe, T., Itabashi, T., Nozawa, K., Yaguchi, T., Fukushima, K., & Kawai, K. (2005). New vermistatin derivatives isolated from Penicillium simplicissimum. Heterocycles, 65, 2771–2776. DOI: 10.3987/COM-05-10523. http://dx.doi.org/10.3987/COM-05-1052310.3987/COM-05-10523Search in Google Scholar

[78] Kováč, L., Böhmerová, E., & Fuska, J. (1978). Inhibition of mitochondrial functions by the antibiotics bikaverin and duclauxine. Journal of Antibiotics, 31, 616–620. 10.7164/antibiotics.31.616Search in Google Scholar

[79] Kuraishi, H., Aoki, M., Itoh, M., Katayama, Y., Sugiyama, J., & Pitt, J. I. (1991). Distribution of ubiquinones in Penicillium and related genera. Mycological Research, 95, 705–711. DOI: 10.1016/S0953-7562(09)80818-6. http://dx.doi.org/10.1016/S0953-7562(09)80818-610.1016/S0953-7562(09)80818-6Search in Google Scholar

[80] Kuroda, K., Morishita, Y., Saito, Y., Ikuina, Y., Ando, K., Kawamoto, I., & Matsuda, Y. (1994). AS-186 compounds, new inhibitors of acyl-CoA: cholesterol acyltransferase from Penicillium asperosporum KY1635. Journal of Antibiotics, 47, 16–22. 10.7164/antibiotics.47.16Search in Google Scholar PubMed

[81] Leal, J. A., Gómez-Miranda, B., Prieto, A., Domenech, J., Ahrazem, O., & Bernabé, M. (1997). Possible chemotypes from cell wall polysaccharides, as an aid in the systematics of Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Mycological Research, 101, 1259–1264. DOI: 10.1017/S0953756297004012. http://dx.doi.org/10.1017/S095375629700401210.1017/S0953756297004012Search in Google Scholar

[82] Lin, J., Zhang, P., Zheng, Z.-H., Dong, Y.-S., & Lu, X.-H. (2006). Study on acetylcholinesterase inhibitor F01-2076A produced from fermentation broth of fungus F01-2076. Hebei Daxue Xuebao, Ziran Kexueban, 26, 47–50. Search in Google Scholar

[83] Madi, L., Katan, T., & Henis, Y. (1992). Inheritance of antagonistic properties and lytic enzyme activities in sexual crosses of Talaromyces flavus. Annals of Applied Biology, 121, 565–576. DOI: 10.1111/j.1744-7348.1992.tb03466.x. http://dx.doi.org/10.1111/j.1744-7348.1992.tb03466.x10.1111/j.1744-7348.1992.tb03466.xSearch in Google Scholar

[84] Madi, L., Katan, T., Katan, J., & Henis, Y. (1997). Biological control of Sclerotium rolfsii and Verticillium dahliae by Talaromyces flavus is mediated by different mechanisms. Phytopathology, 87, 1054–1060. DOI: 10.1094/PHYTO.1997.87.10.1054. http://dx.doi.org/10.1094/PHYTO.1997.87.10.105410.1094/PHYTO.1997.87.10.1054Search in Google Scholar

[85] Maeda, N., Kamisuki, S., Takahashi, S., Yoshida, H., Sakaguchi, K., Sugawara, F., & Mizushina, Y. (2006). The in vitro and in vivo inhibitory effect of dehydroaltenusin: a specific inhibitor of mammalian DNA polymerase α. Current Bioactive Compounds, 2, 3–11. 10.2174/1573407210602010003Search in Google Scholar

[86] Maeda, N., Kokai, Y., Ohtani, S., Sahara, H., Kuriyama, I., Kamisuki, S., Takahashi, S., Sakaguchi, K., Sugawara, F., Yoshida, H., Sato, N., & Mizushina, Y. (2007). Antitumor effects of dehydroaltenusin, a specific inhibitor of mammalian DNA polymerase α. Biochemical and Biophysical Research Communications, 352, 390–396. DOI: 10.1016/j.bbrc.2006.11.021. http://dx.doi.org/10.1016/j.bbrc.2006.11.02110.1016/j.bbrc.2006.11.021Search in Google Scholar

[87] Marois, J. J., Fravel, D. R., & Papavizas, G. C. (1984). Ability of Talaromyces flavus to occupy the rhizosphere and its interaction with Verticillium dahliae. Soil Biology and Biochemistry, 6, 387–390. DOI: 10.1016/0038-0717(84)90038-5. http://dx.doi.org/10.1016/0038-0717(84)90038-510.1016/0038-0717(84)90038-5Search in Google Scholar

[88] Marois, J. J., Johnston, S. A., Dunn, M. T., & Papavizas, G. C. (1982). Biological control of Verticillium wilt of eggplant in the field. Plant Disease, 66, 1166–1168. http://dx.doi.org/10.1094/PD-66-116610.1094/PD-66-1166Search in Google Scholar

[89] Martin, W. R., & Foster, J. W. (1955). Production of trans-l-epoxysuccinic acid by fungi and its microbiological conversion to meso-tartaric acid. Journal of Bacteriology, 70, 405–414. 10.1128/jb.70.4.405-414.1955Search in Google Scholar

[90] Marx, G. S., & Tanenbaum, S. W. (1968). Biogenetic relationship between methyl triacetic lactone and stipitatic acid. Journal of the American Chemical Society, 90, 5302–5303. DOI: 10.1021/ja01021a061. http://dx.doi.org/10.1021/ja01021a06110.1021/ja01021a061Search in Google Scholar

[91] Massias, M., Molho, L., Rebuffat, S., Cesario, M., Guilhen, J., Pascard, C., & Bodo, B. (1989). Vermiculinol and vermiculidiol, macrodiolides from the Penicillium vermiculatum. Phytochemistry, 28, 1491–1494. DOI: 10.1016/S0031-9422(00)97771-9. http://dx.doi.org/10.1016/S0031-9422(00)97771-910.1016/S0031-9422(00)97771-9Search in Google Scholar

[92] Matsumoto, K., & Takada, M. (1984). U.S. Patent No. 4,425,436. Washington, D.C.: U.S. Patent and Trademark Office. Search in Google Scholar

[93] Matsuyama, A., & Kobayashi, Y. (1996). U.S. Patent No. 5,512,465. Washington, D.C.: U.S. Patent and Trademark Office. Search in Google Scholar

[94] Matsuyama, A., Kobayashi, Y., & Ohnishi, H. (1993). Microbial production of optically active 1,3-butanediol from the racemate. Bioscience, Biotechnology, and Biochemistry, 57, 685–686. DOI: 10.1271/bbb.57.685. http://dx.doi.org/10.1271/bbb.57.68510.1271/bbb.57.685Search in Google Scholar

[95] Matsuyama, A., & Yamamoto, H. (2004). Practical applications of biocatalysis for the manufacture of chiral alcohols such as (R)-1,3-butanediol by stereospecific oxidoreduction. In H. U. Blaser & E. Schmidt (Eds.), Asymmetric catalysis on industrial scale (pp. 217–231). Weinheim, Germany: Willey-VCH. Search in Google Scholar

[96] McLaren, D. L., Huang, H. C., & Rimmer, S. R. (1986). Hyperparasitism of Sclerotinia sclerotiorum by Talaromyces flavus. Canadian Journal of Plant Pathology, 8, 43–48. DOI: 10.1080/07060668609501840. http://dx.doi.org/10.1080/0706066860950184010.1080/07060668609501840Search in Google Scholar

[97] McLaren, D. L., Huang, H. C., Rimmer, S. R., & Kokko, E. G. (1989). Ultrastructural studies on infection of sclerotia of Sclerotinia sclerotiorum by Talaromyces flavus. Canadian Journal of Botany, 67, 2199–2205. DOI: 10.1139/b89-279. http://dx.doi.org/10.1139/b89-27910.1139/b89-279Search in Google Scholar

[98] Meelini, L., Nasini, G., & Selva, A. (1970). The structure of funicone: A new metabolite from Penicillium funiculosum Thom. Tetrahedron, 26, 2739–2749. DOI: 10.1016/S0040-4020(01)92849-2. http://dx.doi.org/10.1016/S0040-4020(01)92849-210.1016/S0040-4020(01)92849-2Search in Google Scholar

[99] Mizuno, K., Yagi, A., Takada, M., Matsuura, K., Yamaguchi, K., & Asano, K. (1974). A new antibiotic, talaron. Journal of Antibiotics, 27, 560–563. 10.7164/antibiotics.27.560Search in Google Scholar PubMed

[100] Mizushina, Y., Kamisuki, S., Mizuno, T., Takemura, M., Asahara, H., Linn, S., Yamaguchi, T., Matsukage, A., Hanaoka, F., Yoshida, S., Saneyoshi, M., Sugawara, F., & Sakaguchi, K. (2000). Dehydroaltenusin, a mammalian DNA polymerase α inhibitor. The Journal of Biological Chemistry, 275, 33957–33961. DOI: 10.1074/jbc.M006096200. http://dx.doi.org/10.1074/jbc.M00609620010.1074/jbc.M006096200Search in Google Scholar PubMed

[101] Mohawed, S. M., & Badran, R. A. M. (1995). Proteinase K activities from Talaromyces flavus, with respect to its keratin hydrolyzing enzymes. Egyptian Journal of Microbiology, 30, 369–382. Search in Google Scholar

[102] Monti, D., Pišvejcová, A., Křen, V., Lama, M., & Riva, S. (2004). Generation of an α-L-rhamnosidase library and its application for the selective derhamnosylation of natural products. Biotechnology and Bioengineering, 87, 763–771. DOI: 10.1002/bit.20187. http://dx.doi.org/10.1002/bit.2018710.1002/bit.20187Search in Google Scholar PubMed

[103] Murakami-Nakai, C., Maeda, N., Yonezawa, Y., Kuriyama, I., Kamisuki, S., Takahashi, S., Sugawara, F., Yoshida, H., Sakaguchi, K., & Mizushina, Y. (2004). The effects of dehydroaltenusin, a novel mammalian DNA polymerase α inhibitor, on cell proliferation and cell cycle progression. Biochimica et Biophysica Acta — General Subjects, 1674, 193–199. DOI: 10.1016/j.bbagen.2004.06.016. http://dx.doi.org/10.1016/j.bbagen.2004.06.01610.1016/j.bbagen.2004.06.016Search in Google Scholar PubMed

[104] Murray, F., Llewellyn, D., McFadden, H., Last, D., Dennis, E. S., & Peacock, W. J. (1999). Expression of the Talaromyces flavus glucose oxidase gene in cotton and tobacco reduces fungal infection, but is also phytotoxic. Molecular Breeding, 5, 219–232. DOI: 10.1023/A:1009625801909. http://dx.doi.org/10.1023/A:100962580190910.1023/A:1009625801909Search in Google Scholar

[105] Murray, F. R., Llewellyn, D. J., Peacock, W. J., & Dennis, E. S. (1997). Isolation of the glucose oxidase gene from Talaromyces flavus and characterization of its role in the biocontrol of Verticillium dahliae. Current Genetics, 32, 367–375. DOI: 10.1007/s002940050290. http://dx.doi.org/10.1007/s00294005029010.1007/s002940050290Search in Google Scholar PubMed

[106] Murtaza, N., Husain, S. A., Sarfaraz, T. B., Sultana, N., & Faizi, S. (1997). Isolation and identification of vermistatin, ergosterol, stearic acid and mannitol, metabolic products of Penicillium verruculosum. Planta Medica, 63, 191. DOI: 10.1055/s-2006-957645. http://dx.doi.org/10.1055/s-2006-95764510.1055/s-2006-957645Search in Google Scholar

[107] MycoBank (2010). Fungal Databases. Paris: International Mycological Association. Retrieved March 23, 2010, from http://www.mycobank.org/MycoTaxo.aspx?Link=T&Rec=427208 Search in Google Scholar

[108] Naganuma, M., Nishida, M., Kuramochi, K., Sugawara, F., Yoshida, H., & Mizushina, Y. (2008). 1-Deoxyrubralactone, a novel specific inhibitor of families X and Y of eukaryotic DNA polymerases from a fungal strain derived from sea algae. Bioorganic & Medicinal Chemistry, 16, 2939–2944. DOI: 10.1016/j.bmc.2007.12.044. http://dx.doi.org/10.1016/j.bmc.2007.12.04410.1016/j.bmc.2007.12.044Search in Google Scholar

[109] Nakanishi, S., Toki, S., Saitoh, Y., Tsukuda, E., Kawahara, K., Ando, K., & Matsuda, Y. (1995). Isolation of myosin light chain kinase inhibitors from microorganisms: dehydroaltenusin, altenusin, atrovenetinone, and cyclooctasulfur. Bioscience, Biotechnology, and Biochemistry, 59, 1333–1335. DOI: 10.1271/bbb.59.1333. http://dx.doi.org/10.1271/bbb.59.133310.1271/bbb.59.1333Search in Google Scholar

[110] Nakova, M. B. (2003). Verticillium wilt on cotton — ecological disease management possibilities. Journal of Environmental Protection and Ecology, 4, 70–77. Search in Google Scholar

[111] National Center for Biotechnology Information (2010). Gen-Bank. Bethesda, MS, USA: U.S. National Library of Medicine. Retrieved March 23, 2010, from http://www.ncbi.nlm.nih.gov/sites/entrez?db=nuccore&cmd=search&term=Talaromyces%20flavus Search in Google Scholar

[112] Natsume, M., Takahashi, Y., & Marumo, S. (1988). Chlamydospore-like cell-inducing substances of fungi: close correlation between chemical reactivity with methylamine and biological activity. Agricultural and Biological Chemistry, 52, 307–312. Search in Google Scholar

[113] Nishida, H., Tomoda, H., Cao, J., Araki, S., Okuda, S., & Omura, S. (1991). Purpactins, new inhibitors of acyl-CoA:cholesterol acyltransferase produced by Penicillium purpurogenum. III. Chemical modification of purpactin A. Journal of Antibiotics, 44, 152–159. 10.7164/antibiotics.44.152Search in Google Scholar

[114] Nozawa, K., Nakajima, S., Kawai, K., & Udagawa, S. I. (1992). A γ-pyrone derivative, rapicone, from Ramichloridium apiculatum. Phytochemistry, 31, 4177–4179. DOI: 10.1016/0031-9422(92)80438-K. http://dx.doi.org/10.1016/0031-9422(92)80438-K10.1016/0031-9422(92)80438-KSearch in Google Scholar

[115] Orr, G. F., Kuehn, H. H., & Plunkett, O. A. (1963). The genus Gymnoascus Baranetzky. Mycopathologia, 21, 1–18. DOI: 10.1007/BF02053249. 10.1007/BF02053249Search in Google Scholar

[116] Parra, E., Jiménez-Barbero, J., Bernabé, M., Leal, J. A., Prieto, A., & Gómez-Miranda, B. (1994). Structural studies of fungal cell-wall polysaccharides from two strains of Talaromyces flavus. Carbohydrate Research, 251, 315–325. DOI: 10.1016/0008-6215(94)84294-9. http://dx.doi.org/10.1016/0008-6215(94)84294-910.1016/0008-6215(94)84294-9Search in Google Scholar

[117] Peterson, S. W. (2008). Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia, 100, 205–226. DOI: 10.3852/mycologia.100.2.205. http://dx.doi.org/10.3852/mycologia.100.2.20510.3852/mycologia.100.2.205Search in Google Scholar PubMed

[118] Pitt, J. I. (1979). The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces (pp. 1–634). New York, NY, USA: Academic Press. Search in Google Scholar

[119] Pitt, J. I., & Hocking, A. D. (2009). Fungi and food spoilage (3rd ed., pp. 190). New York, NY, USA: Springer. 10.1007/978-0-387-92207-2Search in Google Scholar

[120] Pohl, C. H., Botha, A., Kock, J. L. F., Coetzee, D. J., & Botes, P. J. (1997). The production of γ-linolenic acid by selected members of the Dikaryomycota grown on different carbon sources. Antonie van Leeuwenhoek, 72, 191–199. DOI: 10.1023/A:1000304809053. http://dx.doi.org/10.1023/A:100030480905310.1023/A:1000304809053Search in Google Scholar

[121] Pornpakakul, S., Liangsakul, J., Ngamrojanavanich, N., Roengsumran, S., Sihanonth, P., Piapukiew, J., Sangvichien, E., Puthong, S., & Petsom, A. (2006). Cytotoxic activity of four xanthones from Emericella variecolor, an endophytic fungus isolated from Croton oblongifolius. Archives of Pharmacal Research, 29, 140–144. DOI: 10.1007/BF02974275. http://dx.doi.org/10.1007/BF0297427510.1007/BF02974275Search in Google Scholar

[122] Portais, J.-C., Tavernier, P., Besson, I., Courtois, J., Courtois, B., & Barbotin, J.-N. (1997). Mechanism of gluconate synthesis in Rhizobium meliloti by using in vivo NMR. FEBS Letters, 412, 485–489. DOI: 10.1016/S0014-5793(97)00832-6. http://dx.doi.org/10.1016/S0014-5793(97)00832-610.1016/S0014-5793(97)00832-6Search in Google Scholar

[123] Prieto, A., Ahrazem, O., Gómez-Miranda, B., Bernabé, M., & Leal, J. A. (2002). Cell wall polysaccharides F1SS disclose the relatedness of the genus Geosmithia with Eupenicillium and Talaromyces. Canadian Journal of Botany, 80, 410–415. DOI: 10.1139/b02-037. http://dx.doi.org/10.1139/b02-03710.1139/b02-037Search in Google Scholar

[124] Proksa, B., Adamcová, J., & Fuska, J. (1994a). Identification and determination of secondary metabolites of Penicillium vermiculatum Dang. Journal of Chromatography A, 665, 185–190. DOI: 10.1016/0021-9673(94)87047-0. http://dx.doi.org/10.1016/0021-9673(94)87047-010.1016/0021-9673(94)87047-0Search in Google Scholar

[125] Proksa, B., Adamcová, J., Liptaj, T., Prónayová, N., & Fuska, J. (1994b). Identification and determination of organic acids in cultivation medium of Penicillium vermiculatum Dang. Monatshefte für Chemie, 125, 707–711. DOI: 10.1007/BF01277630. http://dx.doi.org/10.1007/BF0127763010.1007/BF01277630Search in Google Scholar

[126] Proksa, B., Adamcová, J., & Fuska, J. (1992a). 2-Methylsorbic acid, an antifungal metabolite of Penicillium vermiculatum. Applied Microbiology and Biotechnology, 37, 443–445. DOI: 10.1007/BF00180965. http://dx.doi.org/10.1007/BF0018096510.1007/BF00180965Search in Google Scholar

[127] Proksa, B., & Fuska, J. (2000). Vermiculine: a diolide with immunoregulatory activity. Pharmazie, 55, 791–797. Search in Google Scholar

[128] Proksa, B., & Fuska, J. (1995). Role of aliphatic acids in the biosynthesis of vermiculin in Penicillium vermiculatum. Pharmazie, 50, 215–216. Search in Google Scholar

[129] Proksa, B., Liptaj, T., Prónayová, N., & Fuska, J. (1994c). (−)-Mitorubrinic acid, a new metabolite of Penicillium vermiculatum Dang. F-852. Chemical Papers, 48, 429–432. Search in Google Scholar

[130] Proksa, B., Uhrín, D., Adamcová, J., & Fuska, J. (1992b). Vermilutin, a xanthone from Penicillium vermiculatum. Phytochemistry, 31, 1442–1444. DOI: 10.1016/0031-9422(92)80316-7. http://dx.doi.org/10.1016/0031-9422(92)80316-710.1016/0031-9422(92)80316-7Search in Google Scholar

[131] Proksa, B., Uhrín, D., Adamcová, J., & Fuska, J. (1992c). Vermixocins A and B, two novel metabolites from Penicillium vermiculatum. Journal of Antibiotics, 45, 1268–1272. 10.7164/antibiotics.45.1268Search in Google Scholar PubMed

[132] Proksa, B., Uhrín, D., Fuska, J., & Michálková, E. (1992d). (−)-Mitorubrinol and phthaldehydic acids, new metabolites of Penicillium vermiculatum Dang. Collection of Czechoslovak Chemical Communications, 57, 408–414. DOI: 10.1135/cccc19920408. http://dx.doi.org/10.1135/cccc1992040810.1135/cccc19920408Search in Google Scholar

[133] Proksa, B., Šturdíová, M., Mojumdar, S. C., & Fuska, J. (1997). Production of (−)-mitorubrinic acid by Penicillium vermiculatum. Folia Microbiologica, 42, 133–135. DOI: 10.1007/BF02898722. http://dx.doi.org/10.1007/BF0289872210.1007/BF02898722Search in Google Scholar PubMed

[134] Proksa, B., Šturdíová, M., Nahálková, M., & Fuska, J. (1996). Hydroxyfuniculosic and funiculosic acids, metabolites of Penicillium vermiculatum. Chemical Papers, 50, 21–24. Search in Google Scholar

[135] Qureshi, I. H., Begum, T., & Murtaza, N. (1980). Microbial chemistry. III. Isolation and identification of the metabolic products of Penicillium funiculosum Thom. The chemistry of funiculosic acid. Pakistan Journal of Scientific and Industrial Research, 23, 16–20. Search in Google Scholar

[136] Ram, C., & Ram, A. (1972). Timber-attacking fungi from the state of Maranhão, Brazil. IX. Some new or interesting wood staining fungi. Brotéria. Ciências Naturais, 41, 89–112. Search in Google Scholar

[137] Rauvolfová, J., Kuzma, M., Weignerová, L., Fialová, P., Přikrylová, V., Pišvejcová, A., Macková, M., & Křen, V. (2004). β-N-Acetylhexosaminidase-catalysed synthesis of non-reducing oligosaccharides. Journal of Molecular Catalysis B: Enzymatic, 29, 233–239. DOI: 10.1016/j.molcatb.2003.10.008. http://dx.doi.org/10.1016/j.molcatb.2003.10.00810.1016/j.molcatb.2003.10.008Search in Google Scholar

[138] Reese, E. T., Maguire, A., & Parrish, F. W. (1972). 1,3-Glucanases of fungi and their relationship to mycodextranase. In G. Terui (Ed.), Proceedings of the 4th International Fermentation Symposium, 19–25 March 1972 (pp. 735–742). Osaka, Japan: Society of Fermentation Technology. Search in Google Scholar

[139] Rosett, T., Sankhala, R. H., Stickings, C. E., Taylor, M. E. U., & Thomas, R. (1957). Biochemistry of micro-organisms. 103. Metabolites of Alternaria tenuis auct.: Culture filtrate products. Biochemical Journal, 67, 390–400. 10.1042/bj0670390Search in Google Scholar

[140] Rovensky, J., Buc, M., Blažíčková, S., Ferenčík, M., Rauová, Ľ., Fuska, J., & Stančíková, M. (1997a). Screening of immunological properties of vermiculine in selected model situations. Annals of the New York Academy of Sciences, 815, 369–371. DOI: 10.1111/j.1749-6632.1997.tb52087.x. http://dx.doi.org/10.1111/j.1749-6632.1997.tb52087.x10.1111/j.1749-6632.1997.tb52087.xSearch in Google Scholar

[141] Rovensky, J., Grimová, J., Fuska, J., Laštovička, J., Pekárek, J., & Pokorná, D. (1990). Immunomodulatory effects of vermiculine in a model of adjuvant arthritis. International Journal of Immunopathology and Pharmacology, 3, 35–40. Search in Google Scholar

[142] Rovensky, J., Lackovič, V., Veselková, Z., Košková, E., & Fuska, J. (1997b). Vermiculine-induced decrease in cytokine production by human leukocytes. International Journal of Immunotherapy, 18, 55–60. Search in Google Scholar

[143] Rusman, Y. (2006). Isolation of new secondary metabolites from sponge-associated and plant-derived endophytic fungi. Ph.D. thesis. Heinrich-Heine-University, Düsseldorf, Germany. Search in Google Scholar

[144] Sakaguchi, K., Inoue, T., & Tada, S. (1939). On the production of ethyleneoxide-α, β-dicarboxylic acid by moulds. Zentralblatt für Bakteriologie und Parasitenkunde, Abteilung 2, 100, 302–307 Search in Google Scholar

[145] Salituro, G. M., Pettibone, D. J., Clineschmidt, B. V., Williamson, J. M., & Zink, D. L. (1993). Potent, non-peptidic oxytocin receptor antagonists from a natural source. Bioorganic & Medicinal Chemistry Letters, 3, 337–340. DOI: 10.1016/S0960-894X(01)80905-7. http://dx.doi.org/10.1016/S0960-894X(01)80905-710.1016/S0960-894X(01)80905-7Search in Google Scholar

[146] Sanz, L., Montero, M., Redondo, J., Llobell, A., & Monte, E. (2004). Expression of an α-1,3-glucanase during mycoparasitic interaction of Trichoderma asperellum. FEBS Journal, 272, 493–499. DOI: 10.1111/j.1742-4658. 2004.04491.x. http://dx.doi.org/10.1111/j.1742-4658.2004.04491.x10.1111/j.1742-4658.2004.04491.xSearch in Google Scholar

[147] Sassa, T., Niwa, G., Unno, H., Ikeda, M., & Miura, Y. (1974). Structure of penicillide, a new metabolite produced by a Penicillium sp. Tetrahedron Letters, 15, 3941–3942. DOI: 10.1016/S0040-4039(01)92051-9. http://dx.doi.org/10.1016/S0040-4039(01)92051-910.1016/S0040-4039(01)92051-9Search in Google Scholar

[148] Sassa, T., Nukina, M., & Suzuki, Y. (1991). Deoxyfunicone, a new γ-pyrone metabolite from a resorcylide-producing fungus (Penicillium sp.). Agricultural and Biological Chemistry, 55, 2415–2416. Search in Google Scholar

[149] Seifert, K. A., Samson, R. A., deWaard, J. R., Houbraken, J., Lévesque, C. A., Moncalvo, J.-M., Louis-Seize, G., & Hebert, P. D. N. (2007). Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proceedings of the National Academy of Sciences of the U.S.A., 104, 3901–3906. DOI: 10.1073/pnas.0611691104. http://dx.doi.org/10.1073/pnas.061169110410.1073/pnas.0611691104Search in Google Scholar PubMed PubMed Central

[150] Siessere, V., & Said, S. (1989). Pectic enzymes production in solid-state fermentation using citrus pulp pellets by Talaromyces flavus, Tubercularia vulgaris and Penicillium charlesii. Biotechnology Letters, 11, 343–344. DOI: 10.1007/BF01024515. http://dx.doi.org/10.1007/BF0102451510.1007/BF01024515Search in Google Scholar

[151] Silva, F. V. M., & Gibbs, P. (2004). Target selection in designing pasteurization processes for shelf-stable high-acid fruit products. Critical Reviews in Food Sciences and Nutrition, 44, 353–360. DOI: 10.1080/10408690490489251. http://dx.doi.org/10.1080/1040869049048925110.1080/10408690490489251Search in Google Scholar PubMed

[152] Simerská, P., Kuzma, M., Monti, D., Riva, S., Macková, M., & Křen, V. (2006). Unique transglycosylation potential of extracellular α-d-galactosidase from Talaromyces flavus. Journal of Molecular Catalysis B: Enzymatic, 39, 128–134. DOI: 10.1016/j.molcatb.2006.01.006. http://dx.doi.org/10.1016/j.molcatb.2006.01.00610.1016/j.molcatb.2006.01.006Search in Google Scholar

[153] Simerská, P., Kuzma, M., Pišvejcová, A., Weignerová, L., Macková, M., Riva, S., & Křen, V. (2003). Application of selectively acylated glycosides for the α-galactosidase-catalyzed synthesis of disaccharides. Folia Microbiologica, 48, 329–337. DOI: 10.1007/BF02931362. http://dx.doi.org/10.1007/BF0293136210.1007/BF02931362Search in Google Scholar

[154] Simerská, P., Monti, D., Čechová, I., Pelantová, H., Macková, M., Bezouška, K., Riva, S., & Křen V. (2007). Induction and characterization of an unusual α-d-galactosidase from Talaromyces flavus. Journal of Biotechnology, 128, 61–71. DOI: 10.1016/j.jbiotec.2006.09.006. http://dx.doi.org/10.1016/j.jbiotec.2006.09.00610.1016/j.jbiotec.2006.09.006Search in Google Scholar

[155] Singh, S. B., Kelly, R., Guan, Z., Polishook, J. D., Dombrowski, A. W., Collado, J., González, A., Pelaez, F., Register, E., Kelly, T. M., Bonfiglio, C., & Williamson, J. M. (2005). New fungal metabolite geranylgeranyltransferase inhibitors with antifungal activity. Natural Products Research, 19, 739–747. DOI: 10.1080/1478641042000334715. http://dx.doi.org/10.1080/147864104200033471510.1080/1478641042000334715Search in Google Scholar

[156] Spagna, G., Barbagallo, R. N., Martino, A., & Pifferi, P. G. (2000). A simple method for purifying glycosidases: α-Lrhamnopyranosidase from Aspergillus niger to increase the aroma of Moscato wine. Enyzme and Microbial Technology, 27, 522–530. DOI: 10.1016/S0141-0229(00)00236-2. http://dx.doi.org/10.1016/S0141-0229(00)00236-210.1016/S0141-0229(00)00236-2Search in Google Scholar

[157] Stolk, A. C., & Samson, R. A. (1972). The genus Talaromyces. Studies on Talaromyces and related genera II. Studies in Mycology, 2, 1–65. Search in Google Scholar

[158] Stosz, S. K., Fravel, D. R., & Roberts, D. P. (1996). In vitro analysis of the role of glucose oxidase from Talaromyces flavus in biocontrol of the plant pathogen Verticillium dahliae. Applied and Environmental Microbiology, 62, 3183–3186. 10.1128/aem.62.9.3183-3186.1996Search in Google Scholar

[159] Stosz, S. K., Roy, S., Murphy, C., Wergin, W., & Fravel, D. R. (1998). Localization of glucose oxidase with immunocytochemistry in the biocontrol fungus Talaromyces flavus. Phytopathology, 88, 576–581. DOI: 10.1094/PHYTO.1998.88.6.576. http://dx.doi.org/10.1094/PHYTO.1998.88.6.57610.1094/PHYTO.1998.88.6.576Search in Google Scholar

[160] Šturdíková, M., Proksa, B., Fuska, J., & Stančíková, M. (1995). Vermilutin, an elastase inhibitor produced by Penicillium vermiculatum. Biologia (Bratislava), 50, 233–236. Search in Google Scholar

[161] Sun, J. W., Cheng, X. L., Yan, Z. Z., Zhu, M. F., & Zhang, S. Z. (1988). Screening of dextranase-producing strains and comparison of their enzymic properties. Weishengwu Xuebao, 28, 45–55. Search in Google Scholar

[162] Suzuki, K., Nozawa, K., Udagawa, S., Nakajima, S., & Kawai, K. (1991). Penicillide and dehydroisopenicillide from Talaromyces derxii. Phytochemistry, 30, 2096–2098. DOI: 10.1016/0031-9422(91)85080-J. http://dx.doi.org/10.1016/0031-9422(91)85080-J10.1016/0031-9422(91)85080-JSearch in Google Scholar

[163] Suzuki, S., Hosoe, T., Nozawa, K., Yaguchi, T., Udagawa, S., & Kawai, K. (1999). Mitorubrin derivatives on ascomata of some Talaromyces species of ascomycetous fungi. Journal of Natural Products, 62, 1328–1329. DOI: 10.1021/np990146f. http://dx.doi.org/10.1021/np990146f10.1021/np990146fSearch in Google Scholar PubMed

[164] Tabata, Y., Ikegami, S., Yaguchi, T., Sasaki, T., Hoshiko, S., Sakuma, S., Shin-Ya, K., & Seto, H. (1999). Diazaphilonic acid, a new azaphilone with telomerase inhibitory activity. Journal of Antibiotics, 52, 412–414. 10.7164/antibiotics.52.412Search in Google Scholar PubMed

[165] Takahashi, T., Yamashita, H., Kato, E., Mitsumoto, M., & Murakawa, S. (1976). Purification and some properties of Dglucono-γ-lactone dehydrogenase D-erythrobic acid producing enzyme of Penicillium cyaneo-fulvum. Agricultural & Biological Chemistry, 40, 121–129. Search in Google Scholar

[166] Takeuchi, M., Nakajima, M., Ogita, T., Inukai, M., Kodama, K., Furuya, K., & Haneishi, T. (1989). Fosfonochlorin, a new antibiotic with spheroplast forming activity. Journal of Antibiotics, 42, 198–205. 10.7164/antibiotics.42.198Search in Google Scholar PubMed

[167] Tjamos, E. C., & Fravel, D. R. (1995). Detrimental effect of sublethal heating and Talaromyces flavus on microsclerotia of Verticillium dahliae. Phytopathology, 85, 388–392. DOI: 10.1094/Phyto-85-388. http://dx.doi.org/10.1094/Phyto-85-38810.1094/Phyto-85-388Search in Google Scholar

[168] Tomoda, H., Nishida, H., Masuma, R., Cao, J., Okuda, S., & Omura, S. (1991). Purpactins, new inhibitors of acyl-CoA: cholesterol acyltransferase produced by Penicillium purpurogenum. I. Production, isolation and physico-chemical and biological properties. Journal of Antibiotics, 44, 136–143. 10.7164/antibiotics.44.136Search in Google Scholar

[169] Tournas, V. (1994). Heat-resistant fungi of importance to the food and beverage industry. Critical Reviews in Microbiology, 20, 243–263. DOI: 10.3109/10408419409113558. http://dx.doi.org/10.3109/1040841940911355810.3109/10408419409113558Search in Google Scholar

[170] Tozawa, R., Tsuboya, S., Shirosaki, M., & Sunahara, E. (1996). Japan patent No. 08, 245,691. Tokyo: Japan Patent Office. Search in Google Scholar

[171] Uchida, R., Tomoda, H., Dong, Y., & Omura, S. (1999). Alutenusin, a specific neutral sphingomyelinase inhibitor, produced by Penicillium sp. FO-7436. Journal of Antibiotics, 52, 572–574. Search in Google Scholar

[172] Upadhyay, R. K., Strobel, G. A., Coval, S. J., & Clardy, J. (1990). Fijiensin, the first phytotoxin from Mycosphaerella fijiensis, the causative agent of Black Sigatoka disease. Cellular and Molecular Life Sciences, 46, 982–984. DOI: 10.1007/BF01939396. http://dx.doi.org/10.1007/BF0193939610.1007/BF01939396Search in Google Scholar

[173] Wang, L., & Zhuang, W.-Y. (2007). Phylogenetic analyses of penicillia based on partial calmodulin gene sequences. Biosystems, 88, 113–126. DOI: 10.1016/j.biosystems.2006.04.008. http://dx.doi.org/10.1016/j.biosystems.2006.04.00810.1016/j.biosystems.2006.04.008Search in Google Scholar

[174] Weignerová, L., Huňková, Z., Kuzma, M., & Křen, V. (2001). Enzymatic synthesis of three pNP-α-galacto-biopyranosides: application of the library of fungal α-galactosidases. Journal of Molecular Catalysis B: Enzymatic, 11, 219–224. DOI: 10.1016/S1381-1177(00)00076-X. http://dx.doi.org/10.1016/S1381-1177(00)00076-X10.1016/S1381-1177(00)00076-XSearch in Google Scholar

[175] Weignerová, L., Sedmera, P., Huňková, Z., Halada, P., Křen, V., Casali, M., & Riva, S. (1999). Enzymatic synthesis of iso-globotriose from partially protected lactose. Tetrahedron Letters, 40, 9297–9299. DOI: 10.1016/S0040-4039(99)01950-4. http://dx.doi.org/10.1016/S0040-4039(99)01950-410.1016/S0040-4039(99)01950-4Search in Google Scholar

[176] Wilkoff, L. J., & Martin, W. R. (1963). Studies on the biosynthesis of trans-l-epoxysuccinic acid by Aspergillus fumigatus. The Journal of Biological Chemistry, 238, 843–846. 10.1016/S0021-9258(18)81343-6Search in Google Scholar

[177] Xia, X.-K., Huang, H.-R., She, Z.-G., Cai, J.-W., Lan, L., Zhang, J.-Y., Fu, L.-W., Vrijmoed, L. L. P., & Lin, Y.-C. (2007). Structural and biological properties of vermistatin and two new vermistatin derivatives isolated from the marine-mangrove endophytic fungus Guignardia sp. No. 4382. Helvetica Chimica Acta, 90, 1925–1931. DOI: 10.1002/hlca.200790200. http://dx.doi.org/10.1002/hlca.20079020010.1002/hlca.200790200Search in Google Scholar

[178] Xu, J., Kjer, J., Sendker, J., Wray, V., Guan, H., Edrada, R., Mueller, W. E. G., Bayer, M., Lin, W., Wu, J. & Proksch, P. (2009). Cytosporones, coumarins, and an alkaloid from the endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata. Bioorganic & Medicinal Chemistry, 17, 7362–7367. DOI: 10.1016/j.bmc.2009.08.031. http://dx.doi.org/10.1016/j.bmc.2009.08.03110.1016/j.bmc.2009.08.031Search in Google Scholar PubMed

[179] Yadav, V., Yadav, P. K., Yadav, S., & Yadav, K. D. S. (2010). α-L-Rhamnosidase: A review. Process Biochemistry, 45, 1226–1235. DOI: 10.1016/j.procbio.2010.05.025. http://dx.doi.org/10.1016/j.procbio.2010.05.02510.1016/j.procbio.2010.05.025Search in Google Scholar

[180] Yaguchi, T., Someya, A., & Udagawa, S. (1996). A reappraisal of intrageneric classification of Talaromyces based on the ubiquinone systems. Mycoscience, 37, 55–60. DOI: 10.1007/BF02461457. http://dx.doi.org/10.1007/BF0246145710.1007/BF02461457Search in Google Scholar

[181] Zajícová, A., Mččková, M., Krulová, M., Rychnavská, Z., & Holáň, V. (2001). Immunosuppressive effects of vermiculine in vitro and in allotransplantation system in vivo. International Immunopharmacology, 1, 1939–1945. DOI: 10.1016/S1567-5769(01)00119-9. http://dx.doi.org/10.1016/S1567-5769(01)00119-910.1016/S1567-5769(01)00119-9Search in Google Scholar

[182] Zarevucká, M., Wimmer, Z., Rejzek, M., Huňková, Z., & Křen, V. (2001). Enzymic synthesis and hydrolytic resolution of alkyl β-d-glucopyranosides. Biotechnology Letters, 23, 1505–1515. DOI: 10.1023/A:1011689423869. http://dx.doi.org/10.1023/A:101168942386910.1023/A:1011689423869Search in Google Scholar

[183] Zhang, T.-T., Zhou, J.-S., Liu, Y., & Wang, Q. (2008). Chemical constituents of the aerial part of Bupleurum longicaule. Zhongguo Tianran Yaowu, 6, 430–434. Search in Google Scholar

[184] Zhang, Y., Wang, T., Pei, Y., & Feng, B. (2002). Studies on the chemical constituents of Penicillium janthinellum Biourge. Zhongguo Yaowu Huaxue Zazhi, 12, 208–209. Search in Google Scholar

[185] Zhu, J., & Porco, J. A., Jr. (2006). Asymmetric syntheses of (−)-mitorubrin and related azaphilone natural products. Organic Letters, 8, 5169–5171. DOI: 10.1021/ol062233m. http://dx.doi.org/10.1021/ol062233m10.1021/ol062233mSearch in Google Scholar PubMed

Published Online: 2010-9-23
Published in Print: 2010-12-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Chemical conjugation of biomacromolecules: A mini-review
  2. Talaromyces flavus and its metabolites
  3. Application of non-steroidal anti-inflammatory drugs for palladium determination
  4. A naked-eye, selective and sensitive chemosensor for fluoride ion
  5. Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
  6. The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
  7. Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
  8. Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
  9. Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
  10. Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
  11. Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
  12. Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
  13. Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
  14. Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
  15. Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
  16. ZnO nanoparticles in the synthesis of AB ring core of camptothecin
  17. Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
  18. Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0073-z/pdf?lang=en
Scroll to top button