Startseite Polymer interfaces used in electrochemical DNA-based biosensors
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Polymer interfaces used in electrochemical DNA-based biosensors

  • Júlia Galandová EMAIL logo und Ján Labuda
Veröffentlicht/Copyright: 20. November 2008
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Nowadays DNA-based biosensors represent powerful tools for the study of DNA sequence, DNA chemical interactions and damage. Among them, biosensors with an electrochemical signal transducer play the most important role. The performance of a biosensor strongly depends on the method of a biorecognition element being attached to the electrode. This review refers to polymer materials being used to create a DNA-electrode interface. The main terminology is given in Introduction followed by a description of polymers and polymer-based nanocomposites and their electrochemical properties. A comprehensive table reports examples of the electrochemical detection of DNA immobilized on the polymer matrix. Finally, a short survey is given.

[1] Abdullin, T. I., Nikitina, I. I., Evtugin, G. A., Budnikov, G. K., & Manapova, L. Z. (2007). Electrochemical properties of a two-component DNA-polyaniline film at the surface of glassy carbon electrode. Russian Journal of Electrochemistry, 43, 1284–1288. DOI: 10.1134/S1023193507110110. http://dx.doi.org/10.1134/S102319350711011010.1134/S1023193507110110Suche in Google Scholar

[2] Aiyejorun, T., Thompson, L., Kowalik, J., Josowicz, M., & Janata J. (2005). Control of chloride ion exchange by DNA hybridization at polypyrrole electrode. In E. Paleček, F. Scheller, & J. Wang (Eds.), Electrochemistry of nucleic acids and proteins-towards electrochemical sensors for genomics and proteomics (pp. 331–344). Amsterdam: Elsevier. Suche in Google Scholar

[3] Bartlett, P. N., & Birkin, P. R. (1993). The application of conducting polymers in biosensors. Synthetic Metals, 61, 15–21. DOI: 10.1016/0379-6779(93)91194-7. http://dx.doi.org/10.1016/0379-6779(93)91194-710.1016/0379-6779(93)91194-7Suche in Google Scholar

[4] Bodnar, M., Hartmann, J. F., & Borbely, J. (2005). Preparation and characterization of chitosan-based nanoparticles. Biomacromolecules, 6, 2521–2527. DOI: 10.1021/bm0502258S1525-7797(05)00225-4. http://dx.doi.org/10.1021/bm0502258Suche in Google Scholar

[5] Brito-Madurro, A. G., Ferreira, L. F., Vieira, S. N., Ariza, R. G., Filho, L. R. G., & Madurro, J. M. (2007). Immobilization of purine bases on a poly-4-aminophenol matrix. Journal of Material Science, 42, 3238–3243. DOI: 10.1007/s10853-006-0235-0. http://dx.doi.org/10.1007/s10853-006-0235-010.1007/s10853-006-0235-0Suche in Google Scholar

[6] Brunot, C., Ponsonnet, L., Lagneau, C., Farge, P., Picart, C., & Grosgogeat, B. (2007). Cytotoxicity of polyethyleneimine (PEI) precursor base layer of polyelectrolyte multilayer films. Biomaterials, 28, 632–640. DOI: 10.1016/j.biomaterials.2006.09.026. http://dx.doi.org/10.1016/j.biomaterials.2006.09.02610.1016/j.biomaterials.2006.09.026Suche in Google Scholar PubMed

[7] Cao, L., Lin, H., & Mirsky, V. M. (2007). Surface plasmon resonance biosensor for enrofloxacin based on deoxyribonucleic acid. Analytica Chimica Acta, 589, 1–5. DOI: 10.1016/j.aca.2007.02.034. http://dx.doi.org/10.1016/j.aca.2007.02.03410.1016/j.aca.2007.02.034Suche in Google Scholar PubMed

[8] Carroll, D. L., Czerw, R., & Webster, S. (2005). Polymernanotube coposites for transparent conductive thin films. Synthetic Metals, 155, 694–697. DOI: 10.1016/j.synthmetal.2005.08.031. http://dx.doi.org/10.1016/j.synthmet.2005.08.031Suche in Google Scholar

[9] Cha, J., Han, J., Choi, Y., Sung Yoon, D., Oh, K. W., & Lim, G. (2003). DNA hybridization electrochemical sensor using conducting polymer. Biosensors & Bioelectronics, 18, 1241–1247. DOI: 10.1016/S0956.5663(03)00088-5. http://dx.doi.org/10.1016/S0956-5663(03)00088-5Suche in Google Scholar

[10] Chen, Y., Elling, Y. L., Lee, Y. L., & Chong, S. C. (2006). A fast, sensitive and label-free electrochemical DNA sensor. Journal of Physics: Conference Series, 34, 204–209. DOI: 10.1088/1742-6596/34/1/034. http://dx.doi.org/10.1088/1742-6596/34/1/03410.1088/1742-6596/34/1/034Suche in Google Scholar

[11] Dalmas, F., Dendievel, R., Chazeau, L., Cavaillé, J. Y., & Gauthier, C. (2006). Carbon nanotube filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangled fibrous network. Acta Materialia, 54, 2923–2931. DOI: 10.1016/j.actamat.2006.02.028. http://dx.doi.org/10.1016/j.actamat.2006.02.02810.1016/j.actamat.2006.02.028Suche in Google Scholar

[12] Díaz-González, M., de la Escosura-Muńiz, A., González-García, M. B., & Costa-García, A. (2008). DNA hybridization biosensors using polylisine modified SPCEs. Biosensors & Bioelectronics, 23, 1340–1346. DOI: 10.1016/j.bios.2007.12.001. http://dx.doi.org/10.1016/j.bios.2007.12.00110.1016/j.bios.2007.12.001Suche in Google Scholar PubMed PubMed Central

[13] Djellouli, N., Rochelet-Dequaire, M., Limoges, B., Druet, M., & Brossier, P. (2007). Evaluation of the analytical performances of avidin-modified carbon sensors based on mediated horseradish peroxidase enzyme label and their application to the amperometric detection of nucleic acids. Biosensors & Bioelectronics, 22, 2906–2913. DOI: 10.1016/j.bios.2006.12.006. http://dx.doi.org/10.1016/j.bios.2006.12.00610.1016/j.bios.2006.12.006Suche in Google Scholar PubMed

[14] Dupont-Filliard, A., Billon, M., & Guillerez, S. (2004). Biotin/avidin system for the generation of fully renewable DNA sensor based on biotinylated polypyrrole film. Analytica Chimica Acta, 515, 271–277. DOI: 10.1016/j.aca.2004.03.072. http://dx.doi.org/10.1016/j.aca.2004.03.07210.1016/j.aca.2004.03.072Suche in Google Scholar

[15] Erdem, A. (2007). Nanomaterial-based electrochemical DNA sensing strategies. Talanta, 74, 318–325. DOI: 10.1016/j.talanta.2007.10.012. http://dx.doi.org/10.1016/j.talanta.2007.10.01210.1016/j.talanta.2007.10.012Suche in Google Scholar

[16] Feng, K. J., Yang, I. H., Wang, Z. J., Jiang, J. H., Shen, G. L., & Yu, R. Q. (2006). A nano-porous CeO2/chitosan composite film as the immobilization matrix for colorectal cancer DNA sequence-selective electrochemical biosensor. Talanta, 70, 561–565. DOI: 10.1016/j.talanta.2006.01.009. http://dx.doi.org/10.1016/j.talanta.2006.01.00910.1016/j.talanta.2006.01.009Suche in Google Scholar

[17] Finkenstadt, V. L. (2005). Natural polysaccharides as electroactive polymers. Applied Microbiological Biotechnology, 67, 735–745. DOI: 10.1007/s00253-005-1931-4. http://dx.doi.org/10.1007/s00253-005-1931-410.1007/s00253-005-1931-4Suche in Google Scholar

[18] Fojta, M., Vetterl, V., Tomschik, M., Jelen, F., Nielsen, P., Wang, J., & Palecek, E. (1997). Adsorption of peptide nucleic acid and DNA decamers at electrically charged surfaces. Biophysical Journal, 72, 2285–2293. http://dx.doi.org/10.1016/S0006-3495(97)78873-810.1016/S0006-3495(97)78873-8Suche in Google Scholar

[19] Galandova, J., Ziyatdinova, G., & Labuda, J. (2008). Disposable electrochemical biosensor with multiwalled carbon nanotubes-chitosan composite layer for the detection of deep DNA damage. Analytical Sciences, 24, 711–716. DOI: 10.2116/analsci.24.711. http://dx.doi.org/10.2116/analsci.24.71110.2116/analsci.24.711Suche in Google Scholar PubMed

[20] Gautier, C., Cougnon, C., Pilard, J.-F., Casse, N., Chénais, B., & Laulier, M. (2007b). Detection and modelling of DNA hybridization by EIS measurements. Mention of a polythiophene matrix suitable for electrochemically comtrolled gene delivery. Biosensors & Bioelectronics, 22, 2025–2031. DOI: 10.1016/j.bios.2006.08.040. http://dx.doi.org/10.1016/j.bios.2006.08.04010.1016/j.bios.2006.08.040Suche in Google Scholar PubMed

[21] Gherghi, I. C., Girousi, S. T., Thanou, M., Voulgaropoulos, A. N., & Tzimou-Tsitouridou, R. (2005). Voltammetric study of interaction between polymers (PEI and TMO) and pDNA on hanging mercury drop electrode. Journal of Pharmaceutical and Biomedical Analysis, 39, 177–180. DOI: 10.1016/j.jpba.2005.02.043. http://dx.doi.org/10.1016/j.jpba.2005.02.04310.1016/j.jpba.2005.02.043Suche in Google Scholar PubMed

[22] Gojny, F. H., Wichmann, M. H. G., Fiedler, B., Kinloch, I. A., Bauhofer, W., Windle, A. H., & Schulte, K. (2006). Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer, 47, 2036–2045. DOI: 10.1016/j.polymer.2006.01.029. http://dx.doi.org/10.1016/j.polymer.2006.01.02910.1016/j.polymer.2006.01.029Suche in Google Scholar

[23] Gong, K., Yan, Y., Zhang, M., Su, L., Xiong, S., & Mao, L. (2005). Electrochemistry and electroanalytical applications of carbon nanotubes: A review. Analytical Sciences, 21, 1383–1393. DOI: 10.2116/analsci.21.1383. http://dx.doi.org/10.2116/analsci.21.138310.2116/analsci.21.1383Suche in Google Scholar PubMed

[24] Grennan, K., Killard, J., Hanson, C. J., Cafolla, A. A., & Smyth, M. R. (2006). The optimization and characterization of biosensor based on polyaniline. Talanta, 68, 1591–1600. DOI: 10.1016/j.talanta.2005.08.036. http://dx.doi.org/10.1016/j.talanta.2005.08.03610.1016/j.talanta.2005.08.036Suche in Google Scholar PubMed

[25] Guo, M., Li, Y., Guo, H., Wu, X., & Fan, L. (2007). Electrochemical detection of short sequences related to the hepatitis B virus using MB on chitosan-modified CPE. Bioelectrochemistry, 70, 245–249. DOI: 10.1016/j.bioelechem.2006.09.002. http://dx.doi.org/10.1016/j.bioelechem.2006.09.00210.1016/j.bioelechem.2006.09.002Suche in Google Scholar

[26] Hilt, J. Z., & Byrne, M. E. (2004). Configuration biomimesis in drug delivery: molecular imprinted polymers. Advanced Drug Delivery Reviews, 56, 1599–1620. DOI: 10.1016/j.addr.2004.04.002. http://dx.doi.org/10.1016/j.addr.2004.04.00210.1016/j.addr.2004.04.002Suche in Google Scholar

[27] Hsing, I. M., Xu, Y., & Zhao, W. (2008). Micro-and nano-magnetic particles for application in biosensing. Electroanalysis, 19, 755–768. DOI: 10.1002/elan.200603785. http://dx.doi.org/10.1002/elan.20060378510.1002/elan.200603785Suche in Google Scholar

[28] Kara, P., Kerman, K., Ozkan, D., Meric, B., Erdem, A., Nielsen, P. E., & Ozsoz, M. (2002). Label-free and label based electrochemical detection of hybridization by using methylene blue and peptide nucleic acid probes at chitosan modified carbon paste electrodes. Electroanalysis, 14, 1685–1690. DOI: 1040-0397/02/2412-1685. http://dx.doi.org/10.1002/elan.20029001110.1002/elan.200290011Suche in Google Scholar

[29] Kasemo, B. (2002). Biological surface science. Surface Science, 500, 656–677. DOI: 10.1016/S0039-6028(01)01809-X. http://dx.doi.org/10.1016/S0039-6028(01)01809-X10.1016/S0039-6028(01)01809-XSuche in Google Scholar

[30] Kavanagh, P., & Leech, D. (2006). Redox polymer and probe DNA tethered to gold electrodes for enzyme-amplified amperometric detection of DNA hybridization. Analytical Chemistry, 78, 2710–2716. DOI: 10.1021/ac0521100 S0003-2700(05)02110-4. http://dx.doi.org/10.1021/ac052110010.1021/ac0521100Suche in Google Scholar PubMed

[31] Kim, H. I., Park, S. J., Kim, S. I., Kim, N. G., & Kim, S. J. (2005). Electroactive hydrogels composed of polyacrylic acid and poly(vinyl sulfonic acid) copolymer for application of biomaterial. Synthetic Metals, 155, 674–676. DOI: 10.1016/j.synthmet.2005.08.027. http://dx.doi.org/10.1016/j.synthmet.2005.08.02710.1016/j.synthmet.2005.08.027Suche in Google Scholar

[32] Komarova, E., Aldissi, M., & Bogomolova, A. (2005). Direct electrochemical sensor for fast reagent-free DNA detection. Biosensors & Bioelectronics, 21, 182–189. DOI: 10.1016/j.bios.2004.07.025. http://dx.doi.org/10.1016/j.bios.2004.07.02510.1016/j.bios.2004.07.025Suche in Google Scholar PubMed

[33] Labuda, J., Fojta, M., Jelen, F., & Paleček, E. (2006). Electrochemical sensors with DNA recognition layer. In C. A. Grimes, E. C. Dickey, & M. N. Pishko (Eds.), Encyclopedia of Sensors, Vol. 3 (pp. 201–228). University Park, PA, USA: American Scientific Publishers. Suche in Google Scholar

[34] Lewis, F. D., Zuo, X., Liu, J., Hayes, R. T., & Wasielewski, M. R. (2002) Dynamic of inter-and intrastrand hole transport in DNA hairpins. Journal of the American Chemical Society, 124, 4568–4569. DOI: 10.1021/ja0177859. http://dx.doi.org/10.1021/ja017785910.1021/ja0177859Suche in Google Scholar PubMed

[35] Li, J., Liu, Q., Liu, Y., Liu, S., & Yao, S. (2005). DNA biosensor based on chitosan film doped with carbon nanotubes. Analytical Biochemistry, 346, 107–114. DOI: 10.1016/j.ab.2005.07.037. http://dx.doi.org/10.1016/j.ab.2005.07.03710.1016/j.ab.2005.07.037Suche in Google Scholar PubMed

[36] Liu, W., Sun, S., Cao, Z., Zhang, X., Yao, K., Lu, W.W., & Luk, K. D. K. (2005a). An investigation on the physicochemical properties of CHIT/DNA polyelectrolyte complexes. Biomaterials, 26, 2705–2711. DOI: 10.1016/j.biomaterials.2004.07.038. http://dx.doi.org/10.1016/j.biomaterials.2004.07.03810.1016/j.biomaterials.2004.07.038Suche in Google Scholar

[37] Liu, Y., Tang, J., Chen, X., & Xin, J. H. (2005b). Decoration of carbon nanotubes with chitosan. Carbon, 43, 3178–3180. DOI: 10.1016/j.carbon.2005.06.020. http://dx.doi.org/10.1016/j.carbon.2005.06.02010.1016/j.carbon.2005.06.020Suche in Google Scholar

[38] Lou, X., & He, L. (2008). Surface passivation using oligo(ethylene glycol) in ATRP-assisted DNA detection. Sensors and Actuators B: Chemical, 129, 225–230. DOI: 10.1016/j.snb.2007.07.130. http://dx.doi.org/10.1016/j.snb.2007.07.13010.1016/j.snb.2007.07.130Suche in Google Scholar

[39] Lu, W., Fadeev, A. G., Qi, B., & Mattes, B. R. (2003). Stable conductive polymer electrochemical devices incorporating ionic liquids. Synthetic Metals, 139, 135–136. DOI: 10.1016/S0379-6779(02)00558-1. 10.1016/S0379-6779(02)00558-1Suche in Google Scholar

[40] Lucarelli, F., Tombelli, S., Minunni, M., Marrazza, G., & Mascini, M., (2008). Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Anaytica Chimica Acta, 609, 139–159. DOI: 10.1016/j.aca.2007.12.035. http://dx.doi.org/10.1016/j.aca.2007.12.03510.1016/j.aca.2007.12.035Suche in Google Scholar

[41] Lutkenhaus, J. L., & Hammond, P. T. (2007). Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors. Soft Matter, 3, 804–816. DOI: 10.1039/b701203a. http://dx.doi.org/10.1039/b701203a10.1039/b701203aSuche in Google Scholar

[42] Malhotra, B. D., Chaubey, A., & Singh, S. P. (2006). Prospects of conducting polymers in biosensor. Analytica Chimica Acta, 578, 59–74. DOI: 10.1016/j.aca.2006.04.055. http://dx.doi.org/10.1016/j.aca.2006.04.05510.1016/j.aca.2006.04.055Suche in Google Scholar

[43] Mao, X., Jiang, J., Xu, X., Chu, X., Luo, Y., Shen, G., & Yu, R. (2008). Enzymatic amplification detection of DNA based on “molecular beacon” biosensors. Biosensors & Bioelectronics, 23, 1555–1561. DOI: 10.1016/j.bios.2008.01.019. http://dx.doi.org/10.1016/j.bios.2008.01.01910.1016/j.bios.2008.01.019Suche in Google Scholar

[44] McCullough, R. D. (1998). The chemistry of conducting polythiophenes. Advanced Materials, 10, 93–116. DOI: 10.1002/(SICI)1521-4095(199801)10:2〈93::AID-ADMA93〉3.0.CO;2-F. http://dx.doi.org/10.1002/(SICI)1521-4095(199801)10:2<93::AID-ADMA93>3.0.CO;2-F10.1002/(SICI)1521-4095(199801)10:2<93::AID-ADMA93>3.0.CO;2-FSuche in Google Scholar

[45] Meincke, O., Kaempfer, D., Weickmann, H., Friedrich, C., Vathauer, M., & Warth, H. (2004). Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer, 45, 739–748. DOI: 10.1016/j.polymer.2003.12.013. http://dx.doi.org/10.1016/j.polymer.2003.12.01310.1016/j.polymer.2003.12.013Suche in Google Scholar

[46] Mugweru, A., & Rusling, J. F. (2006). Studies of DNA damage inhibition by dietary antioxidants using metallopolyion/DNA sensors. Electroanalysis, 18, 327–332. DOI: 10.1002/elan.200503414. http://dx.doi.org/10.1002/elan.20050341410.1002/elan.200503414Suche in Google Scholar

[47] Muñoz-Serrano, L., Guadalupe, A. R., & Vega-Bermudez, E. (2005). Morphological studies oligodeoxyribonucleotides probes covalently immobilized on polystyrene modified surfaces. Journal of Biotechnology, 118, 233–245. DOI: 10.1016/j.biotec.2005.05.008. http://dx.doi.org/10.1016/j.jbiotec.2005.05.008Suche in Google Scholar

[48] Musameh, M., Wang, J., Merkoci, A., & Lin, Y. (2002). Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochemistry Communications, 4, 743–746. DOI: 10.1016/S1388-2481(02)00451-4. http://dx.doi.org/10.1016/S1388-2481(02)00451-410.1016/S1388-2481(02)00451-4Suche in Google Scholar

[49] Nakano, K., Hirayama, G., Toguchi, M., Nakamura, K., Iwamoto, K., Soh, N., & Imato, I. (2006). Poly(hydroquinone)-coated electrode for immobilizing of 5′-amine functioned capture probe DNA and electrochemical response to DNA hybridization. Science & Technology of Advanced Materials, 7, 718–725. DOI: 10.1016/j.stam.2006.06.007. http://dx.doi.org/10.1016/j.stam.2006.06.00710.1016/j.stam.2006.06.007Suche in Google Scholar

[50] Nagarajan, R., Liu, W., Kumar, J., & Tripathy, S. K. (2001). Manipulating DNA conformation using intertwined conducting polymer chains. Macromolecules, 34, 3921–3927. DOI: 10.1021/ma0021287 S0024-9297(00)02128-8. http://dx.doi.org/10.1021/ma002128710.1021/ma0021287Suche in Google Scholar

[51] Núñez, M. E., Hall, D. B., & Barton, J. K. (1999). Long-range oxidative damage to DNA: Effects of distance and sequence. Chemical Biology, 6, 85–97. DOI: 10.1016/S1074-5521(99)80005-2. http://dx.doi.org/10.1016/S1074-5521(99)80005-210.1016/S1074-5521(99)80005-2Suche in Google Scholar

[52] Oldham, K. B., & Myland, J. C. (1994). The electrode interface. In Fundamentals of electrochemical science. (pp. 309–355). London: Academic Press. Suche in Google Scholar

[53] Ovadekova, R., & Labuda, J. (2007). Electrochemical DNA biosensors for the investigation of dsDNA host-guest interactions and damage. Current Topics in Electrochemistry, 11, 21–56. Suche in Google Scholar

[54] Paleček, E. (1996). From polarography of DNA to microanalysis with nucleic acid-modified electrodes. Electroanalysis, 8, 7–14. DOI: 10.1002/elan.1140080103. http://dx.doi.org/10.1002/elan.114008010310.1002/elan.1140080103Suche in Google Scholar

[55] Paleček, E. (2002). Past, presence and future of nucleic acids electrochemistry. Talanta, 56, 809–819. DOI: 10.1016/S0039-9140(01)00649-X. http://dx.doi.org/10.1016/S0039-9140(01)00649-X10.1016/S0039-9140(01)00649-XSuche in Google Scholar

[56] Paleček, E., Fojta, M., Jelen, F, & Vetterl, V. (2002). In A. J. Bard, M. Stratmann, & G. S. Wilson (Eds.), Encyclopedia of electrochemistry, Vol. 9 (pp. 365–429). Weinheim: Wiley-VCH. Suche in Google Scholar

[57] Papakonstantopoulos, G. J., Doxastakis, M., Yoshimoto, K., Nealey, P. F., & De Pablo, J. J. (2005). Mechanical properties of nanocomposite systems. In Conference Proceedings of the AIChE Annual Meeting, 30 October–4 November, 2005 (pp. 4727–4728). Cincinnati: AIChE. Suche in Google Scholar

[58] Pedano, M. L., & Rivas, G. A. (2003). Immobilization of DNA at glassy carbon electrodes for the development of affinity biosensors. Biosensors & Bioelectronics, 18, 269–277. DOI: 10.1016/S0956-5663(02)00176-8. http://dx.doi.org/10.1016/S0956-5663(02)00176-810.1016/S0956-5663(02)00176-8Suche in Google Scholar

[59] Peng, H., Soeller, C., Cannell, M. B., Bowmaker, G. A., Cooney R. P., & Travas-Sejdic, J. (2006). Electrochemical detection of DNA hybridization amplified by nanoparticles. Biosensors & Bioelectronics, 21, 1727–1736. DOI:10.1016/j.bios.2005.08.011. http://dx.doi.org/10.1016/j.bios.2005.08.01110.1016/j.bios.2005.08.011Suche in Google Scholar PubMed

[60] Peng, H., Soeller, C., & Travas-Sejdic, J. (2007a). Novel conducting polymers for DNA sensing. Macromolecules, 40, 909–914. DOI: 10.1021/ma062060g. http://dx.doi.org/10.1021/ma062060g10.1021/ma062060gSuche in Google Scholar

[61] Peng, H., Zhang, L., Spires, J., Soeller, C., & Travas-Sejdic, J. (2007b). Synthesis of a functional polythiophene as an active substrate for a label-free electrochemical genosensor. Polymer, 48, 3413–3419. DOI: 10.1016/j.polymer.2007.04.029. http://dx.doi.org/10.1016/j.polymer.2007.04.02910.1016/j.polymer.2007.04.029Suche in Google Scholar

[62] Piro, B., Haccoun, J., Pham, M. C., Tran, L. D., Rubin, A., Perrot, H., & Gabrielli, C. (2005). Study of the DNA hybridization transduction behaviour of a quinone-containing electroactive polymer by cyclic voltammetry and electrochemical impedance spectroscopy. Journal of Electroanalytical Chemistry, 577, 155–165. DOI: 10.1016/j.jelechem.2004.12.002. http://dx.doi.org/10.1016/j.jelechem.2004.12.00210.1016/j.jelechem.2004.12.002Suche in Google Scholar

[63] Pividori, M. I., Merkoci, A., & Alegret, S. (2003). Graphiteepoxy composites as a new transducing material for electrochemical genosensing. Biosensors & Bioelectronics, 19, 473–484. DOI: 10.1016/S0956-5663(03)00222-7. http://dx.doi.org/10.1016/S0956-5663(03)00222-710.1016/S0956-5663(03)00222-7Suche in Google Scholar

[64] Pumera, M., Sánchez, S., Ichinose, I., & Tang, J. (2006). Electrochemical nanobiosensors. Sensors and Actuators B: Chemical, 123, 1195–1205. DOI: 10.1016/j.snb.2006.11.016. http://dx.doi.org/10.1016/j.snb.2006.11.01610.1016/j.snb.2006.11.016Suche in Google Scholar

[65] Pun, C.-C., Lee, K., Kim, J., & Kim, H. J. (2006). Signal amplifying conjugated polymer-based solid-state DNA sensors. Macromolecules, 39, 7461–7463. DOI: 10.1021/ma061330s. http://dx.doi.org/10.1021/ma061330s10.1021/ma061330sSuche in Google Scholar

[66] Ramanavičius, A., Ramanavičiené, A., & Malinauskas, A. (2006). Electrochemical sensors based on conductive polymer-polypyrrole. Electrochimica Acta, 51, 6025–6037. DOI: 10.1016/j.electacta.2005.11.052. http://dx.doi.org/10.1016/j.electacta.2005.11.05210.1016/j.electacta.2005.11.052Suche in Google Scholar

[67] Ratner, B. D. (1995). Surface modification of polymers: chemical, biological and surface analytical challenges. Biosensors & Bioelectronics, 10, 797–804. DOI: 10.1016/0956-5663(95)99218-A. http://dx.doi.org/10.1016/0956-5663(95)99218-A10.1016/0956-5663(95)99218-ASuche in Google Scholar

[68] Rinaudo, M., Pavlov, G., & Desbriéres, J. (1999). Influence of acetic acid concentration on the solubilization of chitosan. Polymer, 40, 7029–7032. DOI: 10.1016/S0032-3861(99)00056-7. http://dx.doi.org/10.1016/S0032-3861(99)00056-710.1016/S0032-3861(99)00056-7Suche in Google Scholar

[69] Rubianes, M. D., & Rivas, G. A. (2007). Dispersion of multi-wall carbon nanotubes in polyethylenimine: A new alternative for preparing electrochemical sensors. Electrochemistry Communications, 9, 480–484. DOI: 10.1016/j.elecom.2006.08.057. http://dx.doi.org/10.1016/j.elecom.2006.08.05710.1016/j.elecom.2006.08.057Suche in Google Scholar

[70] Sassolas, A., Leca-Bouvier, B. D., & Blum, L. J. (2008). DNA biosensors and microarrays. Chemical Reviews, 108, 109–139. DOI: 10.1021/cr068112h. http://dx.doi.org/10.1021/cr068446710.1021/cr068112hSuche in Google Scholar PubMed

[71] Saunders, C. W., & Tylor, L. T. (1990). A review of the synthesis, chemistry and analysis of nitrocellulose. Journal of Energetic Materials, 8, 149–203. DOI: 10.1080/07370659008012572. http://dx.doi.org/10.1080/0737065900801257210.1080/07370659008012572Suche in Google Scholar

[72] Schiedt, B., Healy, K., Morrison, A. P., Neumann, R., & Siwy, Z. (2005). Transport of ions and biomolecules through single asymmetric nanopores in polymer films. Nuclear Instruments & Methods in Physics Research Section B, Beam Interactions with Materials and Atoms, 236, 109–116. DOI: 10.1016/j.nimb.2005.03.265. http://dx.doi.org/10.1016/j.nimb.2005.03.26510.1016/j.nimb.2005.03.265Suche in Google Scholar

[73] Tahir, Z. M., Alocilja, E. C., & Grooms, D. L. (2005). Polyaniline synthesis and its biosensor application. Biosensors & Bioelectronics, 20, 1690–1695. DOI: 10.1016/j.bios.2004.08.008. http://dx.doi.org/10.1016/j.bios.2004.08.00810.1016/j.bios.2004.08.008Suche in Google Scholar

[74] Tchmutin, I. A., Ponomarenko, A. T., Krinichnaya, E. P., Kozub, G. I., & Efimov, O. N. (2003). Electrical properties of composites based on conjugated polymers and conductive fillers. Carbon, 41, 1391–1395. DOI: 10.1016/S0008-6223(03)00067-8. http://dx.doi.org/10.1016/S0008-6223(03)00067-810.1016/S0008-6223(03)00067-8Suche in Google Scholar

[75] Thevenot, D. R., Toth, K., Durst, R. A., & Wilson, G. S. (1999). Electrochemical biosensors: Recommended definitions and clasification (Technical report). Pure and Applied Chemistry, 71, 2333–2348. DOI:10.1351/pac199971122333. http://dx.doi.org/10.1351/pac19997112233310.1351/pac199971122333Suche in Google Scholar

[76] Trojanowitz, M. (2005). Analytical applications of carbon nanotubes: a review. Trends in Analytical Chemistry, 25, 480–489. DOI: 10.1016/j.trac.2005.11.008. http://dx.doi.org/10.1016/j.trac.2005.11.00810.1016/j.trac.2005.11.008Suche in Google Scholar

[77] Tsai, Y.-C., Chen, J.-M., & Marken, F. (2005). Simple cast-deposited multi-walled carbon nanotube/NafionTM thin film electrodes for electrochemical stripping analysis. Microchimica Acta, 150, 269–276. DOI: 10.1007/s00604-005-0364-1. http://dx.doi.org/10.1007/s00604-005-0364-110.1007/s00604-005-0364-1Suche in Google Scholar

[78] Wagner, H. D., & Vaia, R. A. (2004). Nanocomposites: issues at the interface. Materials Today, 7(11), 38–42. DOI: 10.1016/S1369-7021(04)00507-3. http://dx.doi.org/10.1016/S1369-7021(04)00507-310.1016/S1369-7021(04)00507-3Suche in Google Scholar

[79] Wang J. (2004). Carbon nanotube-based electrochemical biosensors: A review. Electroanalysis, 17, 7–14. DOI: 10.1002/elan.200403113. http://dx.doi.org/10.1002/elan.20040311310.1002/elan.200403113Suche in Google Scholar

[80] Wang, J., Chicharro, M., Rivas, G., Cai, X., Dontha, N., Farias, P. A. M., & Shiraishi, H. (1996). DNA biosensor for the detection of hydrazines. Analytical Chemistry, 68, 2251–2254. DOI: 10.1021/ac9600619 S0003-2700(96)00061-3. http://dx.doi.org/10.1021/ac960061910.1021/ac9600619Suche in Google Scholar PubMed

[81] Watson, K. A., Ghose, S., Delozier, D. M., Smith, J. G., Jr., & Connell, J. W. (2005). Transparent, flexible, conductive carbon nanotube coatings for electrostatic charge migration. Polymer, 46, 2076–2085. DOI: 10.1016/j.polymer.2004.12.057. http://dx.doi.org/10.1016/j.polymer.2004.12.05710.1016/j.polymer.2004.12.057Suche in Google Scholar

[82] Wilgoose, G. G., Banks, C. E., Leventis, H. C., & Compton, R. G., (2006). Chemically modified carbon nanotubes for use in electroanalysis. Microchimica Acta, 152, 187–214. DOI: 10.1007/s00604-005-0449-x. http://dx.doi.org/10.1007/s00604-005-0449-x10.1007/s00604-005-0449-xSuche in Google Scholar

[83] Wisniewski, N., & Reichert, M. (2000). Methods for reducing biosensor membrane biofouling. Colloids and Surfaces B: Biointerfaces, 18, 197–219. DOI: 10.1016/S0927-7765(99)00148-4. http://dx.doi.org/10.1016/S0927-7765(99)00148-410.1016/S0927-7765(99)00148-4Suche in Google Scholar

[84] Wu, M., & Shaw, L. L. (2004). On the improved properties of injection-molded carbon nanotube-filled PET/PVDF blends. Journal of Power Sources, 136, 37–44. DOI: 10.1016/j.jpowsour.2004.04.016. http://dx.doi.org/10.1016/j.jpowsour.2004.04.01610.1016/j.jpowsour.2004.04.016Suche in Google Scholar

[85] Xu, Y., Jiang, Y., Yang, L., He, P.-G., & Fang, Y.-Z. (2005). Direct electrochemical detection of oligonucleotide hybridization on poly(thionine) film. Chinese Journal of Chemistry, 23, 1665–1670. DOI: 10.1002/cjoc.200591665. http://dx.doi.org/10.1002/cjoc.20059166510.1002/cjoc.200591665Suche in Google Scholar

[86] Xu, Y., Ye, X., Yang, L., He, P., & Fang, Y. (2006). Impedance DNA biosensor using electropolymerized polypyrrole/multiwalled carbon nanotubes modified electrode. Electroanalysis, 18, 1471–1478. DOI: 10.1002/elan.200603544. http://dx.doi.org/10.1002/elan.20060354410.1002/elan.200603544Suche in Google Scholar

[87] Yang, C.-C., Tian, Y., Jen, A. K.-Y., & Chen, W.-C. (2006). New environmentally responsive fluorescent N-isopropylacrilamide copolymer and its application to DNA sensing. Journal of Polymer Science A: Polymer Chemistry, 44, 5495–5504. DOI: 10.1002/pola.21629. http://dx.doi.org/10.1002/pola.2162910.1002/pola.21629Suche in Google Scholar

[88] Yang, Y., Wang, Z., Yang, M., Li, J., Zheng, F., Shen, G., & Yu, R. (2007). Electrical detection of deoxirobonucleic acid hybridization based on carbon-nanotubes/zirconium dioxide chitosan-modified electrodes. Analytica Chimica Acta, 5, 268–274. DOI: 10.1016/j.aca.2006.11.055. http://dx.doi.org/10.1016/j.aca.2006.11.05510.1016/j.aca.2006.11.055Suche in Google Scholar PubMed

[89] Yi, H., Wu, L-Q., Bentley, W. E., Ghodssi, R., Rubloff, G. W., Culver, J. N., & Payne, G. F. (2005). Biofabrication with chitosan. Biomacromolecules, 6, 2881–2894. DOI: 10.1021/bm050410I. http://dx.doi.org/10.1021/bm050410lSuche in Google Scholar

[90] Yosypchuk, B., Fojta, M., Havran, L., Heyrovský, M., & Paleček, E. (2005). Voltammetric behaviour of osmiumlabeled DNA at mercury meniscus-modified solid amalgam electrode detecting DNA hybridization. Electroanalysis, 18, 186–194. DOI: 10.1002/elan.200503392. http://dx.doi.org/10.1002/elan.20050339210.1002/elan.200503392Suche in Google Scholar

[91] Zeu, J.-M., Chang, M.-R., & Iloangovan, I. (1999). Simultaneous determination of guanine and adenine contents in DNA, RNA and synthetic oligonucletides using a chemically modified electrode. The Analyst, 124, 679–684. DOI: 10.1039/a900532c. http://dx.doi.org/10.1039/a900532c10.1039/a900532cSuche in Google Scholar

[92] Zhou, L. P., Yang, J., Estavillo, C., Stuard, J. D., Schenkman, J. B., & Rusling, J. F. (2003). Toxicity screening by electrochemical detection of DNA damage by metabolites generated in situ in ultrathin DNA-enzyme films. Journal of the American Chemical Society, 125, 1431–1436. DOI: 10.1021/ja0290274 CCC. http://dx.doi.org/10.1021/ja029027410.1021/ja0290274Suche in Google Scholar PubMed

[93] Zhu, N., Chang, Z., He, P., & Fang, Y. (2006). Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization. Electrochimica Acta, 51, 3758–3762. DOI: 10.1016/j.electacta.2005.10.038. http://dx.doi.org/10.1016/j.electacta.2005.10.03810.1016/j.electacta.2005.10.038Suche in Google Scholar

Published Online: 2008-11-20
Published in Print: 2009-2-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-008-0083-2/html?lang=de
Button zum nach oben scrollen