Abstract
Hydrocolloids (or gums) belong to a group of biopolymers widely used in food technology. In the bakery industry, these compounds help to improve food texture and moisture retention, to retard starch retrogradation, and, finally, to enlarge the overall quality of the products during storage. Since recently, some hydrocolloids are being used due to their polymeric structure as fat replacers to obtain low calorie products and to substitute gluten in the formulation of gluten-free breads. This study describes the applications of some hydrocolloids in the bakery industry. Technological effects of these substances for different types of bakery products are also discussed.
[1] Anderson, D. M. W., & Andon, S. A. (1988). Cereal Foods World, 33, 844–850. Search in Google Scholar
[2] Armero, E., & Collar, C. (1996). Antistaling additive effect on fresh wheat bread quality. Food Science and Technology International, 2, 323–333. DOI: 10.1177/108201329600200506. http://dx.doi.org/10.1177/10820132960020050610.1177/108201329600200506Search in Google Scholar
[3] Armero, E., & Collar, C., J. (1998). Crumb firming kinetics of wheat breads with anti-staling additives. Cereal Science, 28, 165–174. DOI: 10.1006/jcrs.1998.0190. http://dx.doi.org/10.1006/jcrs.1998.019010.1006/jcrs.1998.0190Search in Google Scholar
[4] Armisén, R. (1995). World-wide use and importance of Gracilaria. Journal of Applied Phycology, 7, 231–243. DOI:10.1007/BF00003998. http://dx.doi.org/10.1007/BF0000399810.1007/BF00003998Search in Google Scholar
[5] Asghar, A., Anjum, F. M., Tariq, M. W., & Hussain, S. (2005). Effect of carboxy methyl cellulose and gum Arabic on the stability of frozen dough for bakery products. Turkish Journal of Biology, 29, 237–241. Search in Google Scholar
[6] Aydinli, M., Tutaş, M., & Bozdemír, Ö. A. (2004). Mechanical and light transmittance properties of locust bean gum based edible films. Turkish Journal of Chemistry, 28, 163–172 Search in Google Scholar
[7] Azizi, M. H., & Rao, G. V. (2004). Influence of selected surfactant gels and gums on dough rheogical characteristics and quality. Journal of Food Quality, 27, 320–336. DOI: 10.1111/j.1745-4557.2004.00600.x. http://dx.doi.org/10.1111/j.1745-4557.2004.00600.x10.1111/j.1745-4557.2004.00600.xSearch in Google Scholar
[8] Babu, G. V., Prasad, C. D. S., & Murthy, K. V. R. (2002). Evaluation of modified gum karaya as carrier for the dissolution enhancement of poorly water-soluble drug nimodipine. International Journal of Pharmaceutics, 234, 1–17. DOI: 10.1016/S0378-5173(01)00925-5. http://dx.doi.org/10.1016/S0378-5173(01)00925-510.1016/S0378-5173(01)00925-5Search in Google Scholar
[9] Bajaj, I., & Singhal, R. (2007). Gellan gum for reducing oil uptake in sev, a legume based product during deep-fat frying. Food Chemistry, 104, 1472–1477. DOI: 10.1016/j.foodchem.2007.02.011. http://dx.doi.org/10.1016/j.foodchem.2007.02.01110.1016/j.foodchem.2007.02.011Search in Google Scholar
[10] Banik, R. M., Kanari, B., & Upadhyay, S. N. (2000). Exopolysaccharide of the gellan family: prospects and potential. World Journal of Microbiology and Biotechnology, 16, 407–414. DOI: 10.1023/A:1008951706621. http://dx.doi.org/10.1023/A:100895170662110.1023/A:1008951706621Search in Google Scholar
[11] Bárcenas, M. E., Benedito, C., & Rosell, C. M. (2004). Use of hydrocolloids as bread improvers in interrupted baking process with frozen storage. Food Hydrocolloids, 18, 769–774. DOI: 10.1016/j.foodhyd.2003.12.003. http://dx.doi.org/10.1016/j.foodhyd.2003.12.00310.1016/j.foodhyd.2003.12.003Search in Google Scholar
[12] Bárcenas, M. E., & Rosell, C. M. (2005). Effect of HPMC addition on the microstructure, quality and aging of wheat bread. Food Hydrocolloids, 19, 1037–1043. DOI: 10.1016/j.foodhyd.2005.01.005. http://dx.doi.org/10.1016/j.foodhyd.2005.01.00510.1016/j.foodhyd.2005.01.005Search in Google Scholar
[13] Bárcenas, M. E., & Rosell, C. M. (2006). Different approaches for improving the quality and extending the shelf life of the partially baked bread: low temperatures and HPMC addition. Food Engineering, 72, 92–99. DOI: 10.1016/j.jfoodeng.2004.11.027. http://dx.doi.org/10.1016/j.jfoodeng.2004.11.02710.1016/j.jfoodeng.2004.11.027Search in Google Scholar
[14] Bárcenas, M. E., & Rosell, C. M. (2007). Different approaches for increasing the shelf life of partially baked bread: Low temperatures and hydrocolloid addition. Food Chemistry, 100, 1594–1601. DOI: 10.1016/j.foodchem.2005.12.043. http://dx.doi.org/10.1016/j.foodchem.2005.12.04310.1016/j.foodchem.2005.12.043Search in Google Scholar
[15] Becker, A., Katzen, F., Pühler, A., & Ielpi, L. (1998). Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Applied Microbiology and Biotechnology, 50, 145–152. DOI: 10.1007/s002530051269. http://dx.doi.org/10.1007/s00253005126910.1007/s002530051269Search in Google Scholar
[16] Bell, D. A. (1990). Methylcellulose as a structure enhancer in bread baking. Cereal Foods World, 35, 1001–1006. Search in Google Scholar
[17] Bixler, H. J. (1996). Recent development in manufacturing and marketing carageenan. Hydrobiologia, 326/327, 35–57. DOI: 10.1007/BF00047785. http://dx.doi.org/10.1007/BF0004778510.1007/BF00047785Search in Google Scholar
[18] Blake, D. E., Hamblett, C. J., Frost, P. G., Judd, P. A., & Ellis, P. R. (1997). Wheat bread supplemented with depolymerized guar gum reduces the plasma cholesterol concentration in hypercholesterolemic human subjects. American Journal of Clinical Nutrition, 65, 107–113. 10.1093/ajcn/65.1.107Search in Google Scholar
[19] Bonaduce, I., Brecoulaki, H., Colombini, M. P., Lluveras, A., Restivoo, V., & Ribechini, E. (2007). Gas chromatographicmass spectrometric characterisation of plant gums in samples from painted works of art. Journal of Chromatography A, 1144, 275–282. DOI: 10.1016/j.chroma.2007.10.056. http://dx.doi.org/10.1016/j.chroma.2007.10.05610.1016/j.chroma.2007.10.056Search in Google Scholar
[20] Brownlee, I. A., Allen, A., Pearson, J. P., Dettmar, P. W., Havler, M. E., Atherton, M. R., & Onnsoyen, E. (2005). Alginate as a source of dietary fiber. Critical Reviews in Food Science and Nutrition, 45, 497–510. DOI: 10.1080/10408390500285673. http://dx.doi.org/10.1080/1040839050028567310.1080/10408390500285673Search in Google Scholar
[21] Chinachoti, P. (1995). Carbohydrates: functionality in foods. American Journal of Clinical Nutrition, 61, 922–929. 10.1093/ajcn/61.4.922SSearch in Google Scholar
[22] Collar, C., Andreu, P., Martinez, J. C., & Armero, E. (1999). Optimization of hydrocolloid addition to improve wheat bread dough functionality: A response surface methodology study. Food Hydrocolloids, 13, 467–475. DOI: 10.1016/S0268-005X(99)00030-2. http://dx.doi.org/10.1016/S0268-005X(99)00030-210.1016/S0268-005X(99)00030-2Search in Google Scholar
[23] Collar, C., Martinez, J. C., & Rosell C. M. (2001). Lipid binding of fresh and stored formulated wheat breads. Relationships with dough and bread technological performance. Food Science and Technology International, 7, 501–510. Search in Google Scholar
[24] Davidou, S., Le Meste, M., Debever, E., & Bekaert, D. (1996). A contribution to the study of staling of white bread: effect of water and hydrocolloid. Food Hydrocolloids, 10, 375–383. DOI: 35400006704648.0010. http://dx.doi.org/10.1016/S0268-005X(96)80016-610.1016/S0268-005X(96)80016-6Search in Google Scholar
[25] Derekova, A., Sjeholm, C., Mandeva, R., Michailova, L., & Kambourova, M. (2006). Biosynthesis of a thermostable gellan lyase by newly isolated and characterised strain of Geobacillus strarothermophilus 98. Extremophiles, 10, 321–326. DOI: 10.1007/s00792-005-0503-y. http://dx.doi.org/10.1007/s00792-005-0503-y10.1007/s00792-005-0503-ySearch in Google Scholar PubMed
[26] Dickinson, E. (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids, 17, 25–39. DOI: 10.1016/S0268-005X(01)00120-5. http://dx.doi.org/10.1016/S0268-005X(01)00120-510.1016/S0268-005X(01)00120-5Search in Google Scholar
[27] Draget, K. I. (2000). Alginates. In G. O. Phillips, & P. A. Williams (Eds.), Handbook of hydrocolloids (pp. 379–396). Boca Raton: CRC Press LLC. Search in Google Scholar
[28] Dziezak, J. D. (1991). A focus on gums. Food Technology, 45, 115–132. Search in Google Scholar
[29] Ellis, P. R., Dawoud, F. M., & Morris, E. R. (1991). Blood glucose, plasma insulin and sensory responses to guar-containing wheat breads: Effect of molecular weight and paticle size of guar gum. British Journal of Nutrition, 66, 363–379. DOI: 10.1079/BJN19910041. http://dx.doi.org/10.1079/BJN1991004110.1079/BJN19910041Search in Google Scholar
[30] Fernandes, P. B., Gonçalves, M. P., Doublier, J. L. (1993). Influence of locust bean on the rheological properties of kappa-carrageenan systems int he vicinity of the gel point. Carbohydrate Polymers, 22, 99–106. DOI: 10.1016/0144-8617(93)90072-C. http://dx.doi.org/10.1016/0144-8617(93)90072-C10.1016/0144-8617(93)90072-CSearch in Google Scholar
[31] Fialho, A. M., Moreira, L. M., Granja, A. T., Popescu, A. O., Hoffmann, K., & Sá-Correia, I. (2008). Occurrence, production, and application of gellan: current state and perspectives. Applied Microbiology and Biotechnology, 79, 889–900. DOI: 10.1007/s00253-008-1496-0. http://dx.doi.org/10.1007/s00253-008-1496-010.1007/s00253-008-1496-0Search in Google Scholar
[32] Garcia-Ochoa, F., Santos, V. E., Casas, J. A., & Gómez, E. (2000). Xanthan gum: production, recovery, and properties. Biotechnology Advances, 18, 549–579. DOI: 10.1016/S0734-9750(00)00050-1. http://dx.doi.org/10.1016/S0734-9750(00)00050-110.1016/S0734-9750(00)00050-1Search in Google Scholar
[33] Gimeno, E., Morau, C. I., & Kokini, J. L. (2004). Effect of xanthan gum and CMC on the structure and texture of corn flour pellets expanded by microwave heating. Cereal Chemistry, 8, 100–107. http://dx.doi.org/10.1094/CCHEM.2004.81.1.10010.1094/CCHEM.2004.81.1.100Search in Google Scholar
[34] Glicksman, M. (1987). Utilization of seaweed hydrocolloids In the food industry. Hydrobiologia, 151/152, 31–47. DOI: 10.1007/BF00046103. http://dx.doi.org/10.1007/BF0004610310.1007/BF00046103Search in Google Scholar
[35] Gómez, M., Ronda, F., Caballero, P. A., Blanco, C. A., & Rosell, C. M. (2007). Functionality of different hydrocolloids on the quality and shelf-life of yellow layer cakes. Food Hydrocolloids, 21, 167–173. DOI: 10.1016/j.foodhyd.2006.03.012. http://dx.doi.org/10.1016/j.foodhyd.2006.03.01210.1016/j.foodhyd.2006.03.012Search in Google Scholar
[36] Gómez-Díaz, D., & Navaza, J. M. (2003). Comments about rheological effects of food hydrocolloids addition. Journal of Food Agriculture & Environment, 1, 98–102. Search in Google Scholar
[37] Gonçalves, M. P., Sittikijyothin, W., Vázquez da Silva, M., & Lefebvre, J. (2004). A study of the effect of locust bean gum on the rheological behaviour and microstructure of a β-lactoglobulin gel at pH 7. Rheologica Acta, 43, 472–481. DOI: 10.1007/s00397-004-0408-1. http://dx.doi.org/10.1007/s00397-004-0408-110.1007/s00397-004-0408-1Search in Google Scholar
[38] Gonçalves, S., & Romano, A. (2005). Locust bean gum (LBG) as a gelling agent for plant tissue culture media. Scientia Horticulturae, 106, 129–134. DOI: 10.1016/j.scienta.2005.03.003. http://dx.doi.org/10.1016/j.scienta.2005.03.00310.1016/j.scienta.2005.03.003Search in Google Scholar
[39] Gray, J. A., & Bemiller, J. N. (2003). Bread staling: Molecular basis and control. Comprehensive Reviews In Food Science and Food Safety, 2, 1–21. DOI: 10.1111/j.1541-4337.2003.tb00011.x. http://dx.doi.org/10.1111/j.1541-4337.2003.tb00011.x10.1111/j.1541-4337.2003.tb00011.xSearch in Google Scholar
[40] Guarda, A., Rosell, C. M., Benedito, C., & Galotto, M. J. (2004). Different hydrocolloids as bread improvers and antistaling agents. Food Hydrocolloids, 18, 241–247. DOI: 10.1016/S0268-005X(03)00080-8. http://dx.doi.org/10.1016/S0268-005X(03)00080-810.1016/S0268-005X(03)00080-8Search in Google Scholar
[41] Hamcerencu, M., Desbrieres, J., Khoukh, A., Popa, M., & Riess, G. (2008). Synthesis and characterization of new unsaturated esters of gellan gum. Carbohydrate Polymers, 71, 92–100. DOI: 10.1016/j.carbpol.2007.05.021. http://dx.doi.org/10.1016/j.carbpol.2007.05.02110.1016/j.carbpol.2007.05.021Search in Google Scholar
[42] Haque, A., Richardson, R. K., Morris, E. R., Gidley, M. J., & Caswell, D. C. (1993). Thermogelation of methylcellulose. Part II: Effect of hydroxypropyl substituents. Carbohydrate Polymers, 22, 175–186. DOI: 10.1016/0144-8617(93)90138-T. http://dx.doi.org/10.1016/0144-8617(93)90138-T10.1016/0144-8617(93)90138-TSearch in Google Scholar
[43] He, H., & Hoseney, R. C. (1990). Changes In bread firmness and. moisture during long-term storage. Cereal Chemistry, 67, 603–607. Search in Google Scholar
[44] Hug-Iten, S., Handschin, S., Conde-Petit, B., & Escher, F. (1999). Changes In starch microstructure on baking and staling of wheat bread. LWT-Food Science and Technology, 32, 255–260. DOI: 10.1006/fstl.1999.0544. 10.1006/fstl.1999.0544Search in Google Scholar
[45] Imeson, A. (2000). Carrageenans. In G. O. Phillips, & P. A. Williams (Eds.), Handbook of hydrocolloids (pp. 87–102). Boca Raton: CRC Press LLC. Search in Google Scholar
[46] Keskin, S. O., Sumnu, G., & Sahin, S. A. (2007). Study on the effects of different gums on dielectric properties and quality of breads baked In infrared-microwave combination oven. European Food Research and Technology, 224, 329–334. DOI: 10.1007/s00217-006-0334-9. http://dx.doi.org/10.1007/s00217-006-0334-910.1007/s00217-006-0334-9Search in Google Scholar
[47] Khan, T., Park, J. K., & Kwon, S. (2007). Functional biopolymers produced by biochemical technology considering applications In food engineering. Korean Journal of Chemical Engineering, 24, 816–826. DOI: 10.1007/s11814-007-0047-1. http://dx.doi.org/10.1007/s11814-007-0047-110.1007/s11814-007-0047-1Search in Google Scholar
[48] Knutsen, S. H., Mylabodski, D. E., Larsen, B., & Usov, A. I. (1994). A modified system of nomenclature for red algal galactans. Botanica Marina, 37, 163–169. http://dx.doi.org/10.1515/botm.1994.37.2.16310.1515/botm.1994.37.2.163Search in Google Scholar
[49] Kök, M. S., Hill, S. E., & Mitchell, R. (1999). A Comparison of the rheological behaviour of crude and refined locust bean gum preparations during thermal processing. Carbohydrate Polymers, 38, 261–265. DOI: 10.1016/S0144-8617(98)00100-3. http://dx.doi.org/10.1016/S0144-8617(98)00100-310.1016/S0144-8617(98)00100-3Search in Google Scholar
[50] Le Cerf, D., Irinei, F., & Muller, G. (1990). Solution properties of gum exudates from Sterculia urens (karaya gum). Carbohydrate Polymers, 13, 375–386. DOI: 10.1016/0144-8617(90)90037-S. http://dx.doi.org/10.1016/0144-8617(90)90037-S10.1016/0144-8617(90)90037-SSearch in Google Scholar
[51] León, A. E., Ribotta, P. D., Ausar, S. F., Fernández, C., Landa, C. A., & Beltramo, D. M. (2000). Interactions of different carrageenan isoforms and flour components In breadmaking. Journal of Agricultural and Food Chemistry, 48, 2634–2638. DOI: 10.1021/jf991340a. http://dx.doi.org/10.1021/jf991340a10.1021/jf991340aSearch in Google Scholar
[52] Lucca, P. A., & Tepper, B. J. (1994). Fat replacers and the functionality of fats In foods. Trends Food Science and Technology, 5, 12–19. DOI: 10.1016/0924-2244(94)90043-4. http://dx.doi.org/10.1016/0924-2244(94)90043-410.1016/0924-2244(94)90043-4Search in Google Scholar
[53] Mandala, I. G. (2005). Physical properties of fresh and frozen stored, microwave-reheated breads, containing hydrocolloids. Journal of Food Engineering, 66, 291–300. DOI: 10.1016/j.jfoodeng.2004.03.020. http://dx.doi.org/10.1016/j.jfoodeng.2004.03.02010.1016/j.jfoodeng.2004.03.020Search in Google Scholar
[54] Mandala, I., Karabela, I., & Kostaropoulos, A. (2007). Physical properties of breads containing hydrocolloids stored at low temperature. I. Effect of chilling. Food Hydrocolloids, 21, 1397–1406. DOI: 10.1016/j.foodhyd.2006.11.007. http://dx.doi.org/10.1016/j.foodhyd.2006.11.00710.1016/j.foodhyd.2006.11.007Search in Google Scholar
[55] Mandala, I. G., Palogou, E. D., & Kostaropoulos, A. E. (2002). Influence of preparation and storage conditions on texture of xanthan-starch mixtures. Journal of Food Engeenering, 53, 27–38. DOI: 10.1016/S0260-8774(01)00136-4. http://dx.doi.org/10.1016/S0260-8774(01)00136-410.1016/S0260-8774(01)00136-4Search in Google Scholar
[56] Marinho-Soriano, E., & Bourret, E. (2005). Polysaccharides from the red seaweed Gracilaria dura (Gracilariales, Rhodophyta). Bioresource Technology, 96, 379–382. DOI: 10.1016/j.biortech.2004.04.012. http://dx.doi.org/10.1016/j.biortech.2004.04.01210.1016/j.biortech.2004.04.012Search in Google Scholar
[57] Martin, M. L., Zeleznak, K. J., & Hoseney, R. C. (1991). A mechanism of bread firming. I. Role of starch swelling. Cereal Chemistry, 68, 489–503. Search in Google Scholar
[58] Mettler, E., & Seibel, W. (1993). Effect of emulsifiers and hydrocolloids on whole wheat bread quality: A response surface methodology study. Cereal Chemistry, 70, 373–377. Search in Google Scholar
[59] Miyazawa, T., & Funazukuri, T. (2006). Noncatalytic hydrolysis of guar gum under hydrothermal conditions. Carbohydrate Research, 341, 870–877. DOI: 10.1016/j.carres.2006.02.014. http://dx.doi.org/10.1016/j.carres.2006.02.01410.1016/j.carres.2006.02.014Search in Google Scholar
[60] Mohamadnia, Z., Zohuriaan-Mehr, M. J., Kabiri, K., & Razavi-Nouri, R. (2008). Thragacanth gum-garft-polyacrylonitrile: synthesis, characterization and hydrolysis. Journal of Polymer Research, 15, 173–180. DOI: 10.1007/s10965-007-9156-0. http://dx.doi.org/10.1007/s10965-007-9156-010.1007/s10965-007-9156-0Search in Google Scholar
[61] Morris, E. R., & Foster, T. J. (1994). Role of conformation In synergistic interactions of xanthan. Carbohydrate Polymers, 23, 133–135. DOI: 10.1016/0144-8617(94)90038-8. http://dx.doi.org/10.1016/0144-8617(94)90038-810.1016/0144-8617(94)90038-8Search in Google Scholar
[62] Murray, J. C. F. (2000). Cellulosics. In G. O. Phillips, & P. A. Williams (Eds.), Handbook of hydrocolloids (pp. 219–230). Boca Raton: CRC Press LLC. Search in Google Scholar
[63] Pereira-Pacheco, F., Robledo, D., Rodríguez-Carvajal, L., & Freile-Pelegrín, Y. (2007). Optimization of native agar extraction from Hydropuntia cornea from Yucata’n, Me’xico. Bioresource Technology, 98, 1278–1284. DOI: 10.1016/j.biortech.2006.05.016. http://dx.doi.org/10.1016/j.biortech.2006.05.01610.1016/j.biortech.2006.05.016Search in Google Scholar PubMed
[64] Praiboon, J., Chirapart, A., Akakabe, Y., Bhumibhamon, O., & Kajiwara, T. (2006). Physical and chemical characterisation of agar polysaccharides extracte from the Thai and Japanese species of Gracilaria. Science Asia, 32, 11–17. DOI: 10.2306/scienceasia1513-1874.2006.32(s1).011. http://dx.doi.org/10.2306/scienceasia1513-1874.2006.32(s1).01110.2306/scienceasia1513-1874.2006.32(s1).011Search in Google Scholar
[65] Ptaszek, P., Lukasiewicz, M., Achremowicz, B., & Grzesik, M. (2007). Interaction of hydrocolloid networks with mono-and. oligosaccharides. Polymer Bulletin, 58, 295–303. DOI: 10.1007/s00289-006-0633-0. http://dx.doi.org/10.1007/s00289-006-0633-010.1007/s00289-006-0633-0Search in Google Scholar
[66] Ribotta, P. D., León, A. E., & Añón, M. C. (2001). Effects of freezing and frozen storage of doughs on bread quality. Journal of Agricultural and Food Chemistry, 49, 913–918. DOI: 10.1021/jf000905w. http://dx.doi.org/10.1021/jf000905w10.1021/jf000905wSearch in Google Scholar
[67] Ribotta, P. D., Pérez, G. T., León, A. E., & Añón, M. C. (2004). Effect of emulsifier and guar gum on micro structural, rheological and baking performance of frozen bread dough. Food Hydrocolloids, 18, 305–313. DOI: 10.1016/S0268-005X(03)00086-9. http://dx.doi.org/10.1016/S0268-005X(03)00086-910.1016/S0268-005X(03)00086-9Search in Google Scholar
[68] Rojas, J. A., Rosell, C. M., & De Barber, B. (1999). Pasting properties of different wheat flour-hydrocolloid systems. Food Hydrocolloids, 13, 27–33. DOI: 10.1016/S0268-005X(98)00066-6. http://dx.doi.org/10.1016/S0268-005X(98)00066-610.1016/S0268-005X(98)00066-6Search in Google Scholar
[69] Rosell, C. M., Rojas, J. A., & De Barber, B. C. (2001)a. Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids, 15, 75–81. DOI: 10.1016/S0268-005X(00)00054-0. http://dx.doi.org/10.1016/S0268-005X(00)00054-010.1016/S0268-005X(00)00054-0Search in Google Scholar
[70] Rosell, C. M., Rojas, J. A., & De Barber, C. B. (2001)b. Combined effect of different antistaling agents on the pasting properties of wheat flour. European Food Research and Technology, 212, 473–476. DOI: 10.1007/s002170000282. http://dx.doi.org/10.1007/s00217000028210.1007/s002170000282Search in Google Scholar
[71] Sarkar, N., & Walker, L. C. (1995). Hydration-dehydration properties of. methylcellulose and hydroxyprophylmethylcellulose. Carbohydrate Polymers, 27, 177–185. DOI: 10.1016/0144-8617(95)00061-B. http://dx.doi.org/10.1016/0144-8617(95)00061-B10.1016/0144-8617(95)00061-BSearch in Google Scholar
[72] Schiraldi, A., Piazza, L., & Riva, M. (1996). Bread staling: a calorimetric approach. Cereal Chemistry, 73, 32–39. Search in Google Scholar
[73] Selomulyo, V. O., & Zhou, W. (2007). Frozen bread dough: Effects of freezing storage and dough improvers. Journal of Cereal Science, 45, 1–17. DOI:10.1016/j.jcs.2006.10.003. http://dx.doi.org/10.1016/j.jcs.2006.10.00310.1016/j.jcs.2006.10.003Search in Google Scholar
[74] Shalini, K. G., & Laxmi, A. (2007). Influence of additives on rheological characteristics of whole-wheat dough and quality of chapatti (Indian unleavened flat bread) Part I—hydrocolloids. Food Hydrocolloids, 21, 110–117. DOI: 10.1016/j.foodhyd.2006.03.002. http://dx.doi.org/10.1016/j.foodhyd.2006.03.00210.1016/j.foodhyd.2006.03.002Search in Google Scholar
[75] Sharadanant, R., & Khan, K. (2003)a. Effect of hydrophilic gums on frozen dough. I. Dough quality. Cereal Chemistry, 80, 764–772. http://dx.doi.org/10.1094/CCHEM.2003.80.6.76410.1094/CCHEM.2003.80.6.764Search in Google Scholar
[76] Sharadanant, R., & Khan, K. (2003)b. Effect of hydrophilic gums on frozen. dough. II. Bread characteristics. Cereal Chemistry, 80, 773–780. http://dx.doi.org/10.1094/CCHEM.2003.80.6.77310.1094/CCHEM.2003.80.6.773Search in Google Scholar
[77] Sharadanant, R., & Khan, K. (2006). Effect of hydrophilic gums on the quality of frozen dough: electron microscopy, protein solubility, and electrophoresis studies. Cereal Chemistry, 83, 411–417. DOI: 10.1094/CC-83-0411. http://dx.doi.org/10.1094/CC-83-041110.1094/CC-83-0411Search in Google Scholar
[78] Slavin, J. L., & Greenberg, N. A. (2003). Partially hydrolyzed guar gum: clinical nutrition uses. Nutrition, 19, 549–552. DOI: 10.1016/S0899-9007(02)01032-8. http://dx.doi.org/10.1016/S0899-9007(02)01032-810.1016/S0899-9007(02)01032-8Search in Google Scholar
[79] Sun, C., Gunasekaran S., & Richards, M. P. (2007). Effect of xanthan gum on physicochemical properties of whey protein isolate stabilized oil-in-water emulsions. Food Hydrocolloids, 21, 555–564. DOI: 10.1016/j.foodhyd.2006.06.003. http://dx.doi.org/10.1016/j.foodhyd.2006.06.00310.1016/j.foodhyd.2006.06.003Search in Google Scholar
[80] Sworn, G. (2000)a. Xanthan gum. In G. O. Phillips, & P. A. Williams (Eds.), Handbook of hydrocolloids (pp. 103–116). Boca Raton: CRC Press LLC. Search in Google Scholar
[81] Sworn, G. (2000)b. Gellan gum. In G. O. Phillips, & P. A. Williams (Eds.), Handbook of hydrocolloids (pp. 117–136). Boca Raton: CRC Press LLC. Search in Google Scholar
[82] Tavakolipour, H., & Kalbasi-Ashtari, A. (2007). Influence of gums on dough properties and flat bread quality of two persian wheat varieties. Journal of Food Process Engineering, 30, 74–87. DOI: 10.1111/j.1745-4530.2007.00090.x. http://dx.doi.org/10.1111/j.1745-4530.2007.00090.x10.1111/j.1745-4530.2007.00090.xSearch in Google Scholar
[83] Tischer, P. C. S. F., Noseda, M. D., De Freitas, R. A., Sierakowski, M. R., & Duarte, M. E. R. (2006). Effects of iotacarrageenan on the rheological properties of starches. Carbohydrate Polymers, 65, 49–57. DOI: 10.1016/j.carbpol.2005.12.027. http://dx.doi.org/10.1016/j.carbpol.2005.12.02710.1016/j.carbpol.2005.12.027Search in Google Scholar
[84] Tobacman, J. K. (2001). Review of harmful gastrointestinal effects of carrageenan In animal experiments. Environmental Health Perspectives, 109, 983–994. http://dx.doi.org/10.2307/345495110.2307/3454951Search in Google Scholar
[85] Turabi, E., Sumnu, G., & Sahin, S. (2008). Optimization of baking of rice cakes In infrared-microwave combination oven by response surface methodology. Food and Bioprocess Technology, 1, 64–73. DOI: 10.1007/s11947-007-0003-4. http://dx.doi.org/10.1007/s11947-007-0003-410.1007/s11947-007-0003-4Search in Google Scholar
[86] Verbeken, D., Diercky, S., & Dewettinck, K. (2003). Exudate gums: Occurrence, production, and applications. Applied Microbiology and Biotechnology, 63, 10–21. DOI: 10.1007/s00253-003-1354-z. http://dx.doi.org/10.1007/s00253-003-1354-z10.1007/s00253-003-1354-zSearch in Google Scholar PubMed
[87] Weiping, W., & Branwell, A. (2000). Tragacanth and karaya. In G. O. Phillips, & P. A. Williams (Eds.), Handbook of hydrocolloids (pp. 231–246). Boca Raton: CRC Press LLC. Search in Google Scholar
[88] Wielinga, W. C. (2000). Galactomannans. In G. O. Phillips, & P. A. Williams (Eds.), Handbook of hydrocolloids (pp. 137–154). Boca Raton: CRC Press LLC. Search in Google Scholar
[89] Williams, P. A., & Phillips, G. O. (2000). Introduction to food hydrocolloids. In G. O. Phillips, & P. A. Williams (Eds.), Handbook of hydrocolloids (pp. 1–20). Boca Raton: CRC Press LLC. Search in Google Scholar
[90] Xu, X., Li, B., Kennedy, J. F., Xie, B. J., & Huang, M. (2007). Characterization of konjac glucomannan-gellan gum blend films and their suitability for release of nisin incorporated therein. Carbohydrate Polymers, 70, 192–197. DOI: 10.1016/j.carbpol.2007.03.017. http://dx.doi.org/10.1016/j.carbpol.2007.03.01710.1016/j.carbpol.2007.03.017Search in Google Scholar
© 2008 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Polymer interfaces used in electrochemical DNA-based biosensors
- Integration of biomass drying with combustion/gasification technologies and minimization of emissions of organic compounds
- Application of hydrocolloids as baking improvers
- Simultaneous determination of 118 pesticide residues in Chinese teas by gas chromatography-mass spectrometry
- Modifications of spectrophotometric methods for total phosphorus determination in meat samples
- Modification and characterization of montmorillonite fillers used in composites with vulcanized natural rubber
- A new approach to nickel electrolytic colouring of anodised aluminium
- Solvent-free synthesis and properties of carboxymethyl starch fatty acid ester derivatives
- Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites
- Chemometrical analysis of computed QSAR parameters and their use in biological activity prediction
- Mild and efficient conversion of trifluoromethylarenes into tribromomethylarenes using boron tribromide
- 1,3-Dibromo-5,5-dimethylhydantoin as a useful reagent for efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions
- A new xanthone from the roots of Securidaca inappendiculata
Articles in the same Issue
- Polymer interfaces used in electrochemical DNA-based biosensors
- Integration of biomass drying with combustion/gasification technologies and minimization of emissions of organic compounds
- Application of hydrocolloids as baking improvers
- Simultaneous determination of 118 pesticide residues in Chinese teas by gas chromatography-mass spectrometry
- Modifications of spectrophotometric methods for total phosphorus determination in meat samples
- Modification and characterization of montmorillonite fillers used in composites with vulcanized natural rubber
- A new approach to nickel electrolytic colouring of anodised aluminium
- Solvent-free synthesis and properties of carboxymethyl starch fatty acid ester derivatives
- Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites
- Chemometrical analysis of computed QSAR parameters and their use in biological activity prediction
- Mild and efficient conversion of trifluoromethylarenes into tribromomethylarenes using boron tribromide
- 1,3-Dibromo-5,5-dimethylhydantoin as a useful reagent for efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions
- A new xanthone from the roots of Securidaca inappendiculata