Abstract
Spectrophotometric determination of total phosphorus in meat samples was modified using the molybdenum blue reaction with the following reducing agents: ascorbic acid (AA), hydrazine sulphate (HS), and mixture of hydroquinone and hydrazine sulphate (HHS). Proposed methods were validated by evaluation of statistical parameters such as: linearity, sensitivity, limits of detection (DL) and quantification (QL), precision, and accuracy, against the standard and malachite green (MG) modified procedures and by applying food certified materials. The values of within-day and between-days precision in meat samples for all tested reducing agents were better than 3.4 % and 4.2 %, respectively. The recoveries for CRMs analyses were between 92 % and 102.3 %. Obtained results suggest usefulness of the hydroquinone and hydrazine sulphate mixture in the determination of phosphorus ions.
[1] AOAC (1990). Phosphorus in meat. Automated method 972.22. In Official method of analysis of AOAC International, 15th ed. Arlington: AOAC International. Search in Google Scholar
[2] AOAC (1995). Official methods of analysis of AOAC International, 16th ed. Arlington: AOAC International. Search in Google Scholar
[3] Astruc, T., Bielicki, G., Donnat, J. P., Renou, J. P., Fernandez, X., & Monin, G. (2004). Lack of effects of hyperkalemia on the metabolism of normoxic or anoxic rabbit triceps brachii muscle. Meat Science, 67, 15–18. DOI: 10.1016/j.meatsci.2003.09.001. http://dx.doi.org/10.1016/j.meatsci.2003.09.00110.1016/j.meatsci.2003.09.001Search in Google Scholar
[4] Ayiannidis, A. K., & Voulgaropoulos, A. N. (1990). Phosphorus determination in biological materials. Fresenius’ Journal of Analytical Chemistry, 338, 819–820. DOI: 10.1007/BF00323 194. http://dx.doi.org/10.1007/BF00323194Search in Google Scholar
[5] Bertram, H. C., Stødkilde-Jørgensen, H., Karlsson, A. H., & Andersen, H. J. (2002). Post mortem energy metabolism and meat quality of porcine M. longissimus dorsi as influenced by stunning method-A 31P NMR spectroscopic study. Meat Science, 62, 113–119. DOI: 10.1016/S0309-1740(01)00235-2. http://dx.doi.org/10.1016/S0309-1740(01)00235-210.1016/S0309-1740(01)00235-2Search in Google Scholar
[6] Bowden, M., & Diamond, D. (2003). The determination of phosphorus in a microfluidic manifold demonstrating longterm reagent lifetime and chemical stability utilising a colorimetric method. Sensors & Actuators: B, 90, 170–174. DOI: 10.1016/S0925-4005(03)00024-8. http://dx.doi.org/10.1016/S0925-4005(03)00024-810.1016/S0925-4005(03)00024-8Search in Google Scholar
[7] Buldini, P. L., Ferri, D., & Sharma, J. L. (1997). Determination of some inorganic species in edible vegetable oils and fats by ion chromatography. Journal of Chromatography A, 789, 549–555. DOI: 1016/S0021-9673(97)00822-4. http://dx.doi.org/10.1016/S0021-9673(97)00822-410.1016/S0021-9673(97)00822-4Search in Google Scholar
[8] Buldini, P. L., Cavalli, S., & Sharma, J. L. (2002). Matrix removal for the ion chromatographic determination of some trace elements in milk. Microchemical Journal, 72, 277–284. DOI: 10.1016/S0026-265X(02)00039-5. http://dx.doi.org/10.1016/S0026-265X(02)00039-510.1016/S0026-265X(02)00039-5Search in Google Scholar
[9] Cade-Menun, B. J. (2005). Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta, 66, 359–371. DOI: 10.1016/j.talanta.2004.12.024. http://dx.doi.org/10.1016/j.talanta.2004.12.02410.1016/j.talanta.2004.12.024Search in Google Scholar
[10] Cozzolino, D., Kwiatkowski, M. J., Dambergs, R. G., Cynkar, W. U., Janik, L. J., Skouroumounis, G., & Gishen, M. (2008). Analysis of elements in wine using near infrared spectroscopy and partial least squares regression. Talanta, 74, 711–716. DOI: 10.1016/j.talanta.2007.06.045. http://dx.doi.org/10.1016/j.talanta.2007.06.04510.1016/j.talanta.2007.06.045Search in Google Scholar
[11] Crouch, S. R., & Malmstadt, H. V. (1967). A mechanistic investigation of molybdenum blue method for determination of phosphate. Analytical Chemistry, 39, 1084–1089. DOI: 10.1021/ac60254a028. http://dx.doi.org/10.1021/ac60254a02710.1021/ac60254a028Search in Google Scholar
[12] Dušek, M., Kvasnièka, F., Lukášková, L., & Krátka, J. (2003). Isotachophoresis determination of added phosphate in meat products. Meat Science, 65, 765–769. DOI: 10.1016/S0309-1740(02)00279-6. http://dx.doi.org/10.1016/S0309-1740(02)00279-610.1016/S0309-1740(02)00279-6Search in Google Scholar
[13] Ferreira, M. M. C., Morgano, M. A., do Nascimento de Queiroz, S. C., & Mantovan, D. M. B. (2000). Relationships of the minerals and fatty acid contents in processed turkey meat products. Food Chemistry, 69, 259–265. DOI: 10.1016/S0308-8146(99)00259-9. http://dx.doi.org/10.1016/S0308-8146(99)00259-910.1016/S0308-8146(99)00259-9Search in Google Scholar
[14] Gimbert, L. J., Haygarth, P. M., & Worsfold, P. J. (2007). Determination of nanomolar concentrations of phosphate in natural waters using flow injection with a long path length liquid waveguide capillary cell and solid-state spectrophotometric detection. Talanta, 71, 1624–1628. DOI: 10.1016/j.talanta.2006.07.044. http://dx.doi.org/10.1016/j.talanta.2006.07.04410.1016/j.talanta.2006.07.044Search in Google Scholar
[15] Hermida, M., Gonzalez, M., Miranda, M., & Rodríguez-Otero, J. L. (2006). Mineral analysis in rabbit meat from Galicia (NW Spain). Meat Science, 73, 635–639. DOI: 10.1016/j.meatsci.2006.03.004. http://dx.doi.org/10.1016/j.meatsci.2006.03.00410.1016/j.meatsci.2006.03.004Search in Google Scholar
[16] Huang, X., & Zhang, J. Z. (2006). Surfactant-sensitized malachite green method for trace determination of orthophosphate in aqueous solution. Analytica Chimica Acta, 580, 55–67. DOI: 10.1016/j.aca.2006.07.046. http://dx.doi.org/10.1016/j.aca.2006.07.04610.1016/j.aca.2006.07.046Search in Google Scholar
[17] Jastrzębska, A. (2006). Determination of sodium tripolyphosphate in meat samples by capillary zone electrophoresis with on-line isotachophoretic sample pretreatment. Talanta, 69, 1018–1024. DOI: 10.1016/j.talanta.2005.12.010. http://dx.doi.org/10.1016/j.talanta.2005.12.01010.1016/j.talanta.2005.12.010Search in Google Scholar
[18] Jastrzębska, A., Brudka, B., Szymański, T., & Szłyk, E. (2003). Determination of phosphorus in food samples by X-ray fluorescence spectrometry and standard spectrophotometric method. Food Chemistry, 83, 463–467. DOI: 10.1016/S0308-8146(03)00225-5. http://dx.doi.org/10.1016/S0308-8146(03)00225-510.1016/S0308-8146(03)00225-5Search in Google Scholar
[19] Lee, B. J., Hendricks, D. G., & Cornforth, D. P. (1998). Effect of sodium phytate, sodium pyrophosphate and sodium tripolyphosphate on physico-chemical characteristics of restructured beef. Meat Science, 50, 273–283. DOI: 10.1016/S0309-1740(98)00002-3. http://dx.doi.org/10.1016/S0309-1740(98)00002-310.1016/S0309-1740(98)00002-3Search in Google Scholar
[20] Li, W., Bowers, J. A., Craig, J. C., & Perng, S. K. (1993). Sodium triphosphate stability and effect in ground turkey meat. Journal of Food Science, 58, 501–521. DOI: 10.1111/j.1365-2621.1993.tb04310.x. http://dx.doi.org/10.1111/j.1365-2621.1993.tb04310.x10.1111/j.1365-2621.1993.tb04310.xSearch in Google Scholar
[21] Li, C. B., Zhou, G. H., Xu, X. L., Huang, M., & Li, M. Y. (2005). The mineral composition and microscopic changes in thoracic buttons of Chinese Yellow steer with age. Meat Science, 69, 101–106. DOI: 10.1016/j.meatsci.2004.06.009. http://dx.doi.org/10.1016/j.meatsci.2004.06.00910.1016/j.meatsci.2004.06.009Search in Google Scholar PubMed
[22] Lihono, M. A., Mendonca, A. F., Dickson, J. S., & Dixon, P. M. (2001). Influence of sodium pyrophosphate on thermal inactivation of Listeria Monocytogenes in pork slurry and ground pork. Food Microbiology, 18, 269–276. DOI: 10.1006/fmic.2001.0398. http://dx.doi.org/10.1006/fmic.2001.039810.1006/fmic.2001.0398Search in Google Scholar
[23] Miller, J. N., & Miller, J. C. (2000). Statistical and chemometrics for analytical chemistry (4th ed.). Harrow, U.K.: Pearson Education Limited. Search in Google Scholar
[24] Miquel, E., Alegría, A., Barberá, R., & Farré, R. (2004). Microdetermination of phosphorus from infant formulas, casein and casein phosphopeptides. European Food Research and Technology, 219, 639–642. DOI: 10.1007/s00217-004-0994-2. http://dx.doi.org/10.1007/s00217-004-0994-210.1007/s00217-004-0994-2Search in Google Scholar
[25] Molins, R. A., Kraft, A. A., & Olson, D. G. (1985). Adaptation of a method for the determination of soluble orthophosphates in cooked and uncooked pork containing acid-labile poly-and pyrophosphates. Journal of Food Science, 50, 1482–1483. DOI: 10.1111/j.1365-2621.1985.tb10504.x. http://dx.doi.org/10.1111/j.1365-2621.1985.tb10504.x10.1111/j.1365-2621.1985.tb10504.xSearch in Google Scholar
[26] Morais, I. P. A., Tóth, I. V., & Rangel, A. O. S. S. (2005). An overview on flow methods for the chemiluminescence determination of phosphorus. Talanta, 66, 341–347. DOI: 10.1016/j.talanta.2004.10.007. http://dx.doi.org/10.1016/j.talanta.2004.10.00710.1016/j.talanta.2004.10.007Search in Google Scholar
[27] Motomizu, S., & Li, Z. H. (2005). Trace and ultratrace analysis methods for the determination of phosphorus by flow-injection techniques. Talanta, 66, 332–340. DOI: 10.1016/j.talanta.2004.12.056. http://dx.doi.org/10.1016/j.talanta.2004.12.05610.1016/j.talanta.2004.12.056Search in Google Scholar
[28] Motomizu, S., Oshima, M., & Hirashima, A. (1988). Spectrophotometric determination of phosphorus in river water based on the reaction of vanadomolybdophosphate with malachite green. Analytica Chimica Acta, 211, 119–127. DOI: 10.1016/S0003-2670(00)83674-0. http://dx.doi.org/10.1016/S0003-2670(00)83674-010.1016/S0003-2670(00)83674-0Search in Google Scholar
[29] Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of. phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. DOI: 10.1016/S0003-2670(00)88444-5. http://dx.doi.org/10.1016/S0003-2670(00)88444-510.1016/S0003-2670(00)88444-5Search in Google Scholar
[30] Oduoza, C. F. & Thomas, S. A. (1992). On the determination of phosphorus in some processed fruit products by wetdigestion and dry-ashing methods-a preliminary report. Fresenius’ Journal of Analytical Chemistry, 342, 449–451. DOI: 10.1007/BF00322205. http://dx.doi.org/10.1007/BF0032220510.1007/BF00322205Search in Google Scholar
[31] Oliveira, C. C., Zagatto, E. A. G., Araùdjo, A. N., & Lima, J. L. F. C. (1998). Sample preparation in sequential injection analysis. Spectrophotometric determination of total phosphorus in food samples. Analytica Chimica Acta, 371, 57–62. DOI: 10.1016/S0003-2670(98)00284-0. http://dx.doi.org/10.1016/S0003-2670(98)00284-010.1016/S0003-2670(98)00284-0Search in Google Scholar
[32] O’Toole, M., Lau, K. T., Shepherd, R., Slater, C., & Diamond, D. (2007). Determination of phosphate using a highly sensitive paired emitter-detector diode photometric flow detector. Analytica Chimica Acta, 597, 290–294. DOI: 10.1016/j.aca.2007.06.048. http://dx.doi.org/10.1016/j.aca.2007.06.04810.1016/j.aca.2007.06.048Search in Google Scholar PubMed
[33] PN-ISO 13730 (1999). Meat and meat products-Determination of total phosphorus content. Spectrometric method (in Polish). Search in Google Scholar
[34] PN-ISO 2294 (1999). Meat and meat products. Determination of total phosphorus content. Reference method (in Polish). Search in Google Scholar
[35] Polidori, P., Antonini, M., Torres, D., Beghelli, D., & Renieri, C. (2007). Tenderness evaluation and mineral levels of llama (Lama glama) and alpaca (Lama pacos) meat. Meat Science, 77, 599–601. DOI: 10.1016/j.meatsci.2007.05.011. http://dx.doi.org/10.1016/j.meatsci.2007.05.01110.1016/j.meatsci.2007.05.011Search in Google Scholar PubMed
[36] Pons, C., Tóth, I. V., Rangel, A. O. S. S., Forteza, R., & Cerdà V. (2006). Multi-pumping flow system for the determination of dissolved orthophosphate and dissolved organic phosphorus in wastewater samples. Analytica Chimica Acta, 572, 148–154. DOI: 10.1016/j.aca.2006.05.031. http://dx.doi.org/10.1016/j.aca.2006.05.03110.1016/j.aca.2006.05.031Search in Google Scholar PubMed
[37] Røyset, O. (1985). Determination of phosphate species in nutrient solutions and phosphorus in plant material as phosphovanadomolybdic acid by flow injection analysis. Analytica Chimica Acta, 178, 217–221. DOI: 10.1016/S0003-2670(00)86271-6. http://dx.doi.org/10.1016/S0003-2670(00)86272-810.1016/S0003-2670(00)86271-6Search in Google Scholar
[38] Ruiz-Calero, V., & Galceran, M. T. (2005). Ion chromatographic separations of phosphorus species: a review. Talanta, 66, 376–410. DOI: 10.1016/j.talanta.2005.01.027. http://dx.doi.org/10.1016/j.talanta.2005.01.02710.1016/j.talanta.2005.01.027Search in Google Scholar
[39] Sekiguchi, Y., Matsunaga, A., Yamamoto, A., & Inoue, Y. J. (2000). Analysis of condensed phosphates in food products by ion chromatography with an on-line hydroxide eluent generator. Journal of Chromatography A, 881, 639–644. DOI: 10.1016/S0021-9673(99)01278-9. http://dx.doi.org/10.1016/S0021-9673(99)01278-910.1016/S0021-9673(99)01278-9Search in Google Scholar
[40] Skrökki, A. (1995). Additives in finnish sausages and other meat products. Meat Science, 39, 311–315. DOI: 10.1016/0309-1740(94)P1832-G. http://dx.doi.org/10.1016/0309-1740(94)P1832-G10.1016/0309-1740(94)P1832-GSearch in Google Scholar
[41] Szłyk, E., Jastrzębska, A., & Brudka, B. (2004). Determination of total phosphorus in soya food samples by capillary isotachophoresis (cITP). Talanta, 63, 575–580. DOI: 10.1016/j.talanta.2003.11.038. http://dx.doi.org/10.1016/j.talanta.2003.11.03810.1016/j.talanta.2003.11.038Search in Google Scholar
[42] Szydłowska-Czerniak, A., & Szłyk, E. (2003). Spectrophotometric determination of total phosphorus in rape seeds and oils at various stages of technological process: calculation of phospholipids and non-hydratable phospholipids contents in rapeseed oil. Food Chemistry, 81, 613–619. DOI: 10.1016/S0308-8146(02)00562-9. http://dx.doi.org/10.1016/S0308-8146(02)00562-910.1016/S0308-8146(02)00562-9Search in Google Scholar
[43] Thorarinsdottir, K. A., Aragon, S., Bogason, S. G., & Kristbergsson, K. (2001). Effect of phosphate on yield, quality, and water-holding capacity in the processing of salted cod (Gadus morhua). Journal of Food Science, 66, 821–826. DOI: 10.1111/j.1365-2621.2001.tb15180.x. http://dx.doi.org/10.1111/j.1365-2621.2001.tb15180.x10.1111/j.1365-2621.2001.tb15180.xSearch in Google Scholar
[44] Tosi, E. A., Cazzoli, A. F., & Tapiz, L. M. (1998). Phosphorus in oil. Production of molybdenum blue derivative at ambient temperature using noncarcinogenic reagents. Journal of the American Oil Chemists’ Society, 75, 41–44. DOI: 10.1007/s11746-998-0007-x. http://dx.doi.org/10.1007/s11746-998-0007-x10.1007/s11746-998-0007-xSearch in Google Scholar
[45] Ünal, S. B., Erdoğdu, F., & Ekiz, H. I. (2006). Effect of temperature on phosphate diffusion in meats. Journal of Food Engineering, 76, 119–127. DOI: 10.1016/j.jfoodeng.2005.04.041. http://dx.doi.org/10.1016/j.jfoodeng.2005.04.04110.1016/j.jfoodeng.2005.04.041Search in Google Scholar
[46] Vlessidis, A. G., Kotti, M. E., & Evmiridis, N. P. (2004). A study for the validation of spectrophotometric methods for detection, and of digestion methods using a flow injection manifold, for the determination of total phosphorus in wastewaters. Journal of Analytical Chemistry, 59, 77–85. DOI: 10.1023/B:JANC.0000011673.61296.26. http://dx.doi.org/10.1023/B:JANC.0000011673.61296.2610.1023/B:JANC.0000011673.61296.26Search in Google Scholar
© 2008 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Polymer interfaces used in electrochemical DNA-based biosensors
- Integration of biomass drying with combustion/gasification technologies and minimization of emissions of organic compounds
- Application of hydrocolloids as baking improvers
- Simultaneous determination of 118 pesticide residues in Chinese teas by gas chromatography-mass spectrometry
- Modifications of spectrophotometric methods for total phosphorus determination in meat samples
- Modification and characterization of montmorillonite fillers used in composites with vulcanized natural rubber
- A new approach to nickel electrolytic colouring of anodised aluminium
- Solvent-free synthesis and properties of carboxymethyl starch fatty acid ester derivatives
- Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites
- Chemometrical analysis of computed QSAR parameters and their use in biological activity prediction
- Mild and efficient conversion of trifluoromethylarenes into tribromomethylarenes using boron tribromide
- 1,3-Dibromo-5,5-dimethylhydantoin as a useful reagent for efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions
- A new xanthone from the roots of Securidaca inappendiculata
Articles in the same Issue
- Polymer interfaces used in electrochemical DNA-based biosensors
- Integration of biomass drying with combustion/gasification technologies and minimization of emissions of organic compounds
- Application of hydrocolloids as baking improvers
- Simultaneous determination of 118 pesticide residues in Chinese teas by gas chromatography-mass spectrometry
- Modifications of spectrophotometric methods for total phosphorus determination in meat samples
- Modification and characterization of montmorillonite fillers used in composites with vulcanized natural rubber
- A new approach to nickel electrolytic colouring of anodised aluminium
- Solvent-free synthesis and properties of carboxymethyl starch fatty acid ester derivatives
- Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites
- Chemometrical analysis of computed QSAR parameters and their use in biological activity prediction
- Mild and efficient conversion of trifluoromethylarenes into tribromomethylarenes using boron tribromide
- 1,3-Dibromo-5,5-dimethylhydantoin as a useful reagent for efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions
- A new xanthone from the roots of Securidaca inappendiculata