Home Life Sciences Modifications of spectrophotometric methods for total phosphorus determination in meat samples
Article
Licensed
Unlicensed Requires Authentication

Modifications of spectrophotometric methods for total phosphorus determination in meat samples

  • Aneta Jastrzębska EMAIL logo
Published/Copyright: November 20, 2008
Become an author with De Gruyter Brill

Abstract

Spectrophotometric determination of total phosphorus in meat samples was modified using the molybdenum blue reaction with the following reducing agents: ascorbic acid (AA), hydrazine sulphate (HS), and mixture of hydroquinone and hydrazine sulphate (HHS). Proposed methods were validated by evaluation of statistical parameters such as: linearity, sensitivity, limits of detection (DL) and quantification (QL), precision, and accuracy, against the standard and malachite green (MG) modified procedures and by applying food certified materials. The values of within-day and between-days precision in meat samples for all tested reducing agents were better than 3.4 % and 4.2 %, respectively. The recoveries for CRMs analyses were between 92 % and 102.3 %. Obtained results suggest usefulness of the hydroquinone and hydrazine sulphate mixture in the determination of phosphorus ions.

[1] AOAC (1990). Phosphorus in meat. Automated method 972.22. In Official method of analysis of AOAC International, 15th ed. Arlington: AOAC International. Search in Google Scholar

[2] AOAC (1995). Official methods of analysis of AOAC International, 16th ed. Arlington: AOAC International. Search in Google Scholar

[3] Astruc, T., Bielicki, G., Donnat, J. P., Renou, J. P., Fernandez, X., & Monin, G. (2004). Lack of effects of hyperkalemia on the metabolism of normoxic or anoxic rabbit triceps brachii muscle. Meat Science, 67, 15–18. DOI: 10.1016/j.meatsci.2003.09.001. http://dx.doi.org/10.1016/j.meatsci.2003.09.00110.1016/j.meatsci.2003.09.001Search in Google Scholar

[4] Ayiannidis, A. K., & Voulgaropoulos, A. N. (1990). Phosphorus determination in biological materials. Fresenius’ Journal of Analytical Chemistry, 338, 819–820. DOI: 10.1007/BF00323 194. http://dx.doi.org/10.1007/BF00323194Search in Google Scholar

[5] Bertram, H. C., Stødkilde-Jørgensen, H., Karlsson, A. H., & Andersen, H. J. (2002). Post mortem energy metabolism and meat quality of porcine M. longissimus dorsi as influenced by stunning method-A 31P NMR spectroscopic study. Meat Science, 62, 113–119. DOI: 10.1016/S0309-1740(01)00235-2. http://dx.doi.org/10.1016/S0309-1740(01)00235-210.1016/S0309-1740(01)00235-2Search in Google Scholar

[6] Bowden, M., & Diamond, D. (2003). The determination of phosphorus in a microfluidic manifold demonstrating longterm reagent lifetime and chemical stability utilising a colorimetric method. Sensors & Actuators: B, 90, 170–174. DOI: 10.1016/S0925-4005(03)00024-8. http://dx.doi.org/10.1016/S0925-4005(03)00024-810.1016/S0925-4005(03)00024-8Search in Google Scholar

[7] Buldini, P. L., Ferri, D., & Sharma, J. L. (1997). Determination of some inorganic species in edible vegetable oils and fats by ion chromatography. Journal of Chromatography A, 789, 549–555. DOI: 1016/S0021-9673(97)00822-4. http://dx.doi.org/10.1016/S0021-9673(97)00822-410.1016/S0021-9673(97)00822-4Search in Google Scholar

[8] Buldini, P. L., Cavalli, S., & Sharma, J. L. (2002). Matrix removal for the ion chromatographic determination of some trace elements in milk. Microchemical Journal, 72, 277–284. DOI: 10.1016/S0026-265X(02)00039-5. http://dx.doi.org/10.1016/S0026-265X(02)00039-510.1016/S0026-265X(02)00039-5Search in Google Scholar

[9] Cade-Menun, B. J. (2005). Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta, 66, 359–371. DOI: 10.1016/j.talanta.2004.12.024. http://dx.doi.org/10.1016/j.talanta.2004.12.02410.1016/j.talanta.2004.12.024Search in Google Scholar

[10] Cozzolino, D., Kwiatkowski, M. J., Dambergs, R. G., Cynkar, W. U., Janik, L. J., Skouroumounis, G., & Gishen, M. (2008). Analysis of elements in wine using near infrared spectroscopy and partial least squares regression. Talanta, 74, 711–716. DOI: 10.1016/j.talanta.2007.06.045. http://dx.doi.org/10.1016/j.talanta.2007.06.04510.1016/j.talanta.2007.06.045Search in Google Scholar

[11] Crouch, S. R., & Malmstadt, H. V. (1967). A mechanistic investigation of molybdenum blue method for determination of phosphate. Analytical Chemistry, 39, 1084–1089. DOI: 10.1021/ac60254a028. http://dx.doi.org/10.1021/ac60254a02710.1021/ac60254a028Search in Google Scholar

[12] Dušek, M., Kvasnièka, F., Lukášková, L., & Krátka, J. (2003). Isotachophoresis determination of added phosphate in meat products. Meat Science, 65, 765–769. DOI: 10.1016/S0309-1740(02)00279-6. http://dx.doi.org/10.1016/S0309-1740(02)00279-610.1016/S0309-1740(02)00279-6Search in Google Scholar

[13] Ferreira, M. M. C., Morgano, M. A., do Nascimento de Queiroz, S. C., & Mantovan, D. M. B. (2000). Relationships of the minerals and fatty acid contents in processed turkey meat products. Food Chemistry, 69, 259–265. DOI: 10.1016/S0308-8146(99)00259-9. http://dx.doi.org/10.1016/S0308-8146(99)00259-910.1016/S0308-8146(99)00259-9Search in Google Scholar

[14] Gimbert, L. J., Haygarth, P. M., & Worsfold, P. J. (2007). Determination of nanomolar concentrations of phosphate in natural waters using flow injection with a long path length liquid waveguide capillary cell and solid-state spectrophotometric detection. Talanta, 71, 1624–1628. DOI: 10.1016/j.talanta.2006.07.044. http://dx.doi.org/10.1016/j.talanta.2006.07.04410.1016/j.talanta.2006.07.044Search in Google Scholar

[15] Hermida, M., Gonzalez, M., Miranda, M., & Rodríguez-Otero, J. L. (2006). Mineral analysis in rabbit meat from Galicia (NW Spain). Meat Science, 73, 635–639. DOI: 10.1016/j.meatsci.2006.03.004. http://dx.doi.org/10.1016/j.meatsci.2006.03.00410.1016/j.meatsci.2006.03.004Search in Google Scholar

[16] Huang, X., & Zhang, J. Z. (2006). Surfactant-sensitized malachite green method for trace determination of orthophosphate in aqueous solution. Analytica Chimica Acta, 580, 55–67. DOI: 10.1016/j.aca.2006.07.046. http://dx.doi.org/10.1016/j.aca.2006.07.04610.1016/j.aca.2006.07.046Search in Google Scholar

[17] Jastrzębska, A. (2006). Determination of sodium tripolyphosphate in meat samples by capillary zone electrophoresis with on-line isotachophoretic sample pretreatment. Talanta, 69, 1018–1024. DOI: 10.1016/j.talanta.2005.12.010. http://dx.doi.org/10.1016/j.talanta.2005.12.01010.1016/j.talanta.2005.12.010Search in Google Scholar

[18] Jastrzębska, A., Brudka, B., Szymański, T., & Szłyk, E. (2003). Determination of phosphorus in food samples by X-ray fluorescence spectrometry and standard spectrophotometric method. Food Chemistry, 83, 463–467. DOI: 10.1016/S0308-8146(03)00225-5. http://dx.doi.org/10.1016/S0308-8146(03)00225-510.1016/S0308-8146(03)00225-5Search in Google Scholar

[19] Lee, B. J., Hendricks, D. G., & Cornforth, D. P. (1998). Effect of sodium phytate, sodium pyrophosphate and sodium tripolyphosphate on physico-chemical characteristics of restructured beef. Meat Science, 50, 273–283. DOI: 10.1016/S0309-1740(98)00002-3. http://dx.doi.org/10.1016/S0309-1740(98)00002-310.1016/S0309-1740(98)00002-3Search in Google Scholar

[20] Li, W., Bowers, J. A., Craig, J. C., & Perng, S. K. (1993). Sodium triphosphate stability and effect in ground turkey meat. Journal of Food Science, 58, 501–521. DOI: 10.1111/j.1365-2621.1993.tb04310.x. http://dx.doi.org/10.1111/j.1365-2621.1993.tb04310.x10.1111/j.1365-2621.1993.tb04310.xSearch in Google Scholar

[21] Li, C. B., Zhou, G. H., Xu, X. L., Huang, M., & Li, M. Y. (2005). The mineral composition and microscopic changes in thoracic buttons of Chinese Yellow steer with age. Meat Science, 69, 101–106. DOI: 10.1016/j.meatsci.2004.06.009. http://dx.doi.org/10.1016/j.meatsci.2004.06.00910.1016/j.meatsci.2004.06.009Search in Google Scholar PubMed

[22] Lihono, M. A., Mendonca, A. F., Dickson, J. S., & Dixon, P. M. (2001). Influence of sodium pyrophosphate on thermal inactivation of Listeria Monocytogenes in pork slurry and ground pork. Food Microbiology, 18, 269–276. DOI: 10.1006/fmic.2001.0398. http://dx.doi.org/10.1006/fmic.2001.039810.1006/fmic.2001.0398Search in Google Scholar

[23] Miller, J. N., & Miller, J. C. (2000). Statistical and chemometrics for analytical chemistry (4th ed.). Harrow, U.K.: Pearson Education Limited. Search in Google Scholar

[24] Miquel, E., Alegría, A., Barberá, R., & Farré, R. (2004). Microdetermination of phosphorus from infant formulas, casein and casein phosphopeptides. European Food Research and Technology, 219, 639–642. DOI: 10.1007/s00217-004-0994-2. http://dx.doi.org/10.1007/s00217-004-0994-210.1007/s00217-004-0994-2Search in Google Scholar

[25] Molins, R. A., Kraft, A. A., & Olson, D. G. (1985). Adaptation of a method for the determination of soluble orthophosphates in cooked and uncooked pork containing acid-labile poly-and pyrophosphates. Journal of Food Science, 50, 1482–1483. DOI: 10.1111/j.1365-2621.1985.tb10504.x. http://dx.doi.org/10.1111/j.1365-2621.1985.tb10504.x10.1111/j.1365-2621.1985.tb10504.xSearch in Google Scholar

[26] Morais, I. P. A., Tóth, I. V., & Rangel, A. O. S. S. (2005). An overview on flow methods for the chemiluminescence determination of phosphorus. Talanta, 66, 341–347. DOI: 10.1016/j.talanta.2004.10.007. http://dx.doi.org/10.1016/j.talanta.2004.10.00710.1016/j.talanta.2004.10.007Search in Google Scholar

[27] Motomizu, S., & Li, Z. H. (2005). Trace and ultratrace analysis methods for the determination of phosphorus by flow-injection techniques. Talanta, 66, 332–340. DOI: 10.1016/j.talanta.2004.12.056. http://dx.doi.org/10.1016/j.talanta.2004.12.05610.1016/j.talanta.2004.12.056Search in Google Scholar

[28] Motomizu, S., Oshima, M., & Hirashima, A. (1988). Spectrophotometric determination of phosphorus in river water based on the reaction of vanadomolybdophosphate with malachite green. Analytica Chimica Acta, 211, 119–127. DOI: 10.1016/S0003-2670(00)83674-0. http://dx.doi.org/10.1016/S0003-2670(00)83674-010.1016/S0003-2670(00)83674-0Search in Google Scholar

[29] Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of. phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. DOI: 10.1016/S0003-2670(00)88444-5. http://dx.doi.org/10.1016/S0003-2670(00)88444-510.1016/S0003-2670(00)88444-5Search in Google Scholar

[30] Oduoza, C. F. & Thomas, S. A. (1992). On the determination of phosphorus in some processed fruit products by wetdigestion and dry-ashing methods-a preliminary report. Fresenius’ Journal of Analytical Chemistry, 342, 449–451. DOI: 10.1007/BF00322205. http://dx.doi.org/10.1007/BF0032220510.1007/BF00322205Search in Google Scholar

[31] Oliveira, C. C., Zagatto, E. A. G., Araùdjo, A. N., & Lima, J. L. F. C. (1998). Sample preparation in sequential injection analysis. Spectrophotometric determination of total phosphorus in food samples. Analytica Chimica Acta, 371, 57–62. DOI: 10.1016/S0003-2670(98)00284-0. http://dx.doi.org/10.1016/S0003-2670(98)00284-010.1016/S0003-2670(98)00284-0Search in Google Scholar

[32] O’Toole, M., Lau, K. T., Shepherd, R., Slater, C., & Diamond, D. (2007). Determination of phosphate using a highly sensitive paired emitter-detector diode photometric flow detector. Analytica Chimica Acta, 597, 290–294. DOI: 10.1016/j.aca.2007.06.048. http://dx.doi.org/10.1016/j.aca.2007.06.04810.1016/j.aca.2007.06.048Search in Google Scholar PubMed

[33] PN-ISO 13730 (1999). Meat and meat products-Determination of total phosphorus content. Spectrometric method (in Polish). Search in Google Scholar

[34] PN-ISO 2294 (1999). Meat and meat products. Determination of total phosphorus content. Reference method (in Polish). Search in Google Scholar

[35] Polidori, P., Antonini, M., Torres, D., Beghelli, D., & Renieri, C. (2007). Tenderness evaluation and mineral levels of llama (Lama glama) and alpaca (Lama pacos) meat. Meat Science, 77, 599–601. DOI: 10.1016/j.meatsci.2007.05.011. http://dx.doi.org/10.1016/j.meatsci.2007.05.01110.1016/j.meatsci.2007.05.011Search in Google Scholar PubMed

[36] Pons, C., Tóth, I. V., Rangel, A. O. S. S., Forteza, R., & Cerdà V. (2006). Multi-pumping flow system for the determination of dissolved orthophosphate and dissolved organic phosphorus in wastewater samples. Analytica Chimica Acta, 572, 148–154. DOI: 10.1016/j.aca.2006.05.031. http://dx.doi.org/10.1016/j.aca.2006.05.03110.1016/j.aca.2006.05.031Search in Google Scholar PubMed

[37] Røyset, O. (1985). Determination of phosphate species in nutrient solutions and phosphorus in plant material as phosphovanadomolybdic acid by flow injection analysis. Analytica Chimica Acta, 178, 217–221. DOI: 10.1016/S0003-2670(00)86271-6. http://dx.doi.org/10.1016/S0003-2670(00)86272-810.1016/S0003-2670(00)86271-6Search in Google Scholar

[38] Ruiz-Calero, V., & Galceran, M. T. (2005). Ion chromatographic separations of phosphorus species: a review. Talanta, 66, 376–410. DOI: 10.1016/j.talanta.2005.01.027. http://dx.doi.org/10.1016/j.talanta.2005.01.02710.1016/j.talanta.2005.01.027Search in Google Scholar

[39] Sekiguchi, Y., Matsunaga, A., Yamamoto, A., & Inoue, Y. J. (2000). Analysis of condensed phosphates in food products by ion chromatography with an on-line hydroxide eluent generator. Journal of Chromatography A, 881, 639–644. DOI: 10.1016/S0021-9673(99)01278-9. http://dx.doi.org/10.1016/S0021-9673(99)01278-910.1016/S0021-9673(99)01278-9Search in Google Scholar

[40] Skrökki, A. (1995). Additives in finnish sausages and other meat products. Meat Science, 39, 311–315. DOI: 10.1016/0309-1740(94)P1832-G. http://dx.doi.org/10.1016/0309-1740(94)P1832-G10.1016/0309-1740(94)P1832-GSearch in Google Scholar

[41] Szłyk, E., Jastrzębska, A., & Brudka, B. (2004). Determination of total phosphorus in soya food samples by capillary isotachophoresis (cITP). Talanta, 63, 575–580. DOI: 10.1016/j.talanta.2003.11.038. http://dx.doi.org/10.1016/j.talanta.2003.11.03810.1016/j.talanta.2003.11.038Search in Google Scholar

[42] Szydłowska-Czerniak, A., & Szłyk, E. (2003). Spectrophotometric determination of total phosphorus in rape seeds and oils at various stages of technological process: calculation of phospholipids and non-hydratable phospholipids contents in rapeseed oil. Food Chemistry, 81, 613–619. DOI: 10.1016/S0308-8146(02)00562-9. http://dx.doi.org/10.1016/S0308-8146(02)00562-910.1016/S0308-8146(02)00562-9Search in Google Scholar

[43] Thorarinsdottir, K. A., Aragon, S., Bogason, S. G., & Kristbergsson, K. (2001). Effect of phosphate on yield, quality, and water-holding capacity in the processing of salted cod (Gadus morhua). Journal of Food Science, 66, 821–826. DOI: 10.1111/j.1365-2621.2001.tb15180.x. http://dx.doi.org/10.1111/j.1365-2621.2001.tb15180.x10.1111/j.1365-2621.2001.tb15180.xSearch in Google Scholar

[44] Tosi, E. A., Cazzoli, A. F., & Tapiz, L. M. (1998). Phosphorus in oil. Production of molybdenum blue derivative at ambient temperature using noncarcinogenic reagents. Journal of the American Oil Chemists’ Society, 75, 41–44. DOI: 10.1007/s11746-998-0007-x. http://dx.doi.org/10.1007/s11746-998-0007-x10.1007/s11746-998-0007-xSearch in Google Scholar

[45] Ünal, S. B., Erdoğdu, F., & Ekiz, H. I. (2006). Effect of temperature on phosphate diffusion in meats. Journal of Food Engineering, 76, 119–127. DOI: 10.1016/j.jfoodeng.2005.04.041. http://dx.doi.org/10.1016/j.jfoodeng.2005.04.04110.1016/j.jfoodeng.2005.04.041Search in Google Scholar

[46] Vlessidis, A. G., Kotti, M. E., & Evmiridis, N. P. (2004). A study for the validation of spectrophotometric methods for detection, and of digestion methods using a flow injection manifold, for the determination of total phosphorus in wastewaters. Journal of Analytical Chemistry, 59, 77–85. DOI: 10.1023/B:JANC.0000011673.61296.26. http://dx.doi.org/10.1023/B:JANC.0000011673.61296.2610.1023/B:JANC.0000011673.61296.26Search in Google Scholar

Published Online: 2008-11-20
Published in Print: 2009-2-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 28.1.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-008-0091-2/html
Scroll to top button