Home Life Sciences Solvent-free synthesis and properties of carboxymethyl starch fatty acid ester derivatives
Article
Licensed
Unlicensed Requires Authentication

Solvent-free synthesis and properties of carboxymethyl starch fatty acid ester derivatives

  • Viera Mazíková EMAIL logo , Iva Sroková and Anna Ebringerová
Published/Copyright: November 20, 2008
Become an author with De Gruyter Brill

Abstract

Water-soluble, partially hydrophobized polysaccharides have become attractive due to their potential to act as polymeric surfactants. From carboxymethyl starch (CMS), water-soluble polymeric surfactants were prepared by esterification using two unconvential methods based on (A) a reaction with mixed anhydrides and (B) with methyl laureate (MELA) and methyl esters of the fatty acid complex of rape seed oil (MERO) under ‘solvent-free’ conditions. The obtained CMS derivatives were characterized by structural, surface-active and surfactant performance properties. Esterification using method B was successful in contrast to method A which yielded derivatives with a very low extent of esterification. Although the derivatives reduced the surface tension moderately, they exhibited remarkable emulsifying properties. The performance tests indicated good washing power and antiredeposition efficiency. The results suggest that suitable polymeric surfactants can be prepared by the unconventional esterification method B using both acylation agents. The preparations might substitute the expensive and invasive industrially applied conventional methods.

[1] Aburto, J., Alric, I., & Borredon, E. (2005). Organic solvent-free transesterification of various starches with lauric acid methyl ester and triacyl glycerides. Starch/Stärke, 57, 145–152. DOI: 10.1002/star.200400380. http://dx.doi.org/10.1002/star.20040038010.1002/star.200400380Search in Google Scholar

[2] Akiyama, E., Kashimoto, A., Fukuda, K., Hotta, H., Suzuki, T., & Kitsuki, T. J. (2005). Thickening properties and emulsification mechanisms of new derivatives of polysaccharides in aqueous solution. Journal of Colloid and Interface Science, 282, 448–457. DOI: 10.1016/j.jcis.2004.08.178. http://dx.doi.org/10.1016/j.jcis.2004.08.17810.1016/j.jcis.2004.08.178Search in Google Scholar

[3] Alpert, N. L., Keiser, W. E., & Szymanski, H. A. (1997). IR, theory and practices of infrared spectroscopy. New York: Plenum Press. Search in Google Scholar

[4] Anastas, P. T., & Williams, T. C. (1998). Green chemistry. London: Oxford University Press. Search in Google Scholar

[5] Burczyk, B. (2002). Biodegradable and chemodegradable nonionic surfactants. In Encyclopedia of surface and colloid science (Vol. 1, pp. 724–752). New York: Marcel Dekker. Search in Google Scholar

[6] Fang, J. M., Fowler, P. A., Tomkinson, J., & Hill, C. A. S. (2002). The preparation and characterisation of a series of chemically modified potato starches. Carbohydrate Polymers, 47, 245–252. DOI: 10.1016/S0144-8617(01)00187-4. http://dx.doi.org/10.1016/S0144-8617(01)00187-410.1016/S0144-8617(01)00187-4Search in Google Scholar

[7] Girardeau, S., Aburto, J., Vaca-Garcia, C., Alric, I., & Borredon, E. (1999). A performing method of transesterification of cellulose and amylose. In Proceedings of the IV. European Symposium on Industrial Crops and Products, 23–25 March 1999 (pp. 229). Münster, Germany: Landwirtschaftsverlag GmbH. Search in Google Scholar

[8] Heinze, T., Rensing, S., & Koschella, A. (2007). Starch derivatives of high degree of functionalization. 13. Novel amphiphilic starch products. Starch/Stärke, 59, 199–207. DOI: 10.1002/star.200600561. http://dx.doi.org/10.1002/star.20060056110.1002/star.200600561Search in Google Scholar

[9] Ihara, T., Nishioka, T., Kiyosaki, T., & Kamitani, H. (2004). Solution properties of a novel polysaccharide derivative. Chemistry Letters, 33, 1094–1095. DOI: 10.1246/cl.2004.1094. http://dx.doi.org/10.1246/cl.2004.109410.1246/cl.2004.1094Search in Google Scholar

[10] Latetin, A. I., Gal’braikh, L. S., & Rogovin, Z. A. (1968). Use of the ester exchange reaction for the synthesis of cellulose stearates. Polymer Science USSR, 10, 761–766. http://dx.doi.org/10.1016/0032-3950(68)90224-410.1016/0032-3950(68)90224-4Search in Google Scholar

[11] Lunkenheimer, K., & Miller, R. (1979). On the purity of aqueous surfactant solutions and the dynamic surface tension behaviour. Tenside, 16, 312–316. 10.1515/tsd-1979-160606Search in Google Scholar

[12] Miníková, S. (2008). The synthesis and study of the structure and properties of novel hydroxyethylcellulose derivatives. Ph.D. thesis, Trenčín University of Alexander Dubček, Púchov. Search in Google Scholar

[13] Mocanu, G., Mihai, D., LeCerf, D., Picton, L., & Muller, G. (2004). Synthesis of new associative gel microspheres from carboxymethyl pullulan and their interactions with lysozyme. European Polymer Journal, 40, 283–289. DOI: 10.1016/j.eurpolymj.2003.09.019. http://dx.doi.org/10.1016/j.eurpolymj.2003.09.01910.1016/j.eurpolymj.2003.09.019Search in Google Scholar

[14] Paik, Y. H., & Swift, G. (1995). Polysaccharides as raw materials for the detergent industry. Chemistry & Industry, 2, 55–59. Search in Google Scholar

[15] Piasecki, A. (2002). Biodegradable and chemically degradable anionic surfactants. In Encyclopedia of surface and colloid science (Vol. 1, pp. 894–917). New York: Marcel Dekker. Search in Google Scholar

[16] Rooney, M. L. (1976). Interesterification of starch with methyl palmitate. Polymer, 17, 555–558. DOI: 10.1016/0032-3861(76)90267-6. http://dx.doi.org/10.1016/0032-3861(76)90267-610.1016/0032-3861(76)90267-6Search in Google Scholar

[17] Rosilio, V., Albrecht, G., Baszkin, A., & Merle, L. (2000). Surface properties of hydrophobically modified carboxymethylcellulose derivatives. Effect of salt and proteins. Colloids and Surfaces B: Biointerfaces, 19, 163–172. DOI: 10.1016/SO927 7765(00)00151 X. http://dx.doi.org/10.1016/S0927-7765(00)00151-X10.1016/S0927-7765(00)00151-XSearch in Google Scholar

[18] Rouzes, C., Durand, A., Leonard, M., & Dellacherie, E. (2002). Surface activity and emulsification properties of hydrophobically modified dextrans. Journal of Colloid and Interface Science, 253, 217–223. DOI: 10.1006/jcis.2002.8357. http://dx.doi.org/10.1006/jcis.2002.835710.1006/jcis.2002.8357Search in Google Scholar

[19] Sarkar, N. (1984). Structural interpretation of the interfacial properties of aqueous solutions of methylcellulose and hydroxypropyl methylcellulose. Polymer, 25, 481–486. DOI: 10.1016/0032-3861(84)90206-4. http://dx.doi.org/10.1016/0032-3861(84)90206-410.1016/0032-3861(84)90206-4Search in Google Scholar

[20] Shogren, R. L. (1996). Preparation, thermal properties, and extrusion of high-amylose starch acetates. Carbohydrate Polymers, 29, 57–62. DOI: 10.1016/0144-8617(95)00143-3. http://dx.doi.org/10.1016/0144-8617(95)00143-310.1016/0144-8617(95)00143-3Search in Google Scholar

[21] Skalková, P., Sroková, I., Sasinková, V., & Ebringerová, A. (2006). Polymeric surfactants from beechwood glucuronoxylan. Tenside Surfactants Detergents, 43, 137–141. 10.3139/113.100301Search in Google Scholar

[22] Sroková, I., Ebringerová, A., & Heinze, T. (2001). Emulsifying agents based on O-(carboxymethyl)starch. Tenside Surfactants Detergents, 38, 277–279. Search in Google Scholar

[23] Sroková, I., Miníková, S., Ebringerová, A., Sasinková, V., & Heinze, T. (2003). Novel O-(2-hydroxyethyl) cellulose-based nonionic biosurfactants. Tenside Surfactants Detergents, 40, 73–76. Search in Google Scholar

[24] Sroková, I., Talába, P., Hodul, P., & Balážová, A. (1998). Emulsifying agents based on O-(carboxymethyl)celulose. Tenside Surfactants Detergents, 35, 342–344. Search in Google Scholar

[25] Sroková, I., Tomanová, V., Ebringerová, A., & Heinze, T. (2004). Water-soluble esterified O-(carboxymethyl)cellulose) derivatives-synthesis and properties. Macromolecular Materials and Engineering, 289, 63–69. DOI: 10.1002/mame. 200300124. http://dx.doi.org/10.1002/mame.20030012410.1002/mame.200300124Search in Google Scholar

[26] Stüpel, H. (1957). Synthetische Wasch und Reinigungsmittel (1st ed.). Stuttgart: Konradin Verlag. Search in Google Scholar

[27] Vaca-Garcia, C., & Borredon, M. E. (1999). Solvent-free fatty acylation of cellulose and lignocellulosic wastes. Part 2: Reactions with fatty acid. Bioresource Technology, 70, 135–142. DOI: 10.1016/S0960-8524(99)00034-6. http://dx.doi.org/10.1016/S0960-8524(99)00034-610.1016/S0960-8524(99)00034-6Search in Google Scholar

[28] Vaca-Garcia, C., Thiebaud, S., Borredon, M. E., & Gozzelino, G. (1998). Cellulose esterification with fatty acids and acetic anhydride in lithium chloride/N,N-dimethylacetamide medium. Journal of the American Oil Chemists’ Society, 75, 315–319. DOI: 10.1007/s11746-998-0047-2. http://dx.doi.org/10.1007/s11746-998-0047-210.1007/s11746-998-0047-2Search in Google Scholar

[29] Xing, G. X., Zhang, S. F., Ju, B. Z., & Yang, J. Z. (2006). Microwave-assisted synthesis of starch maleate by dry method. Starch/Stärke, 58, 464–467. DOI: 10.1002/star. 200600507. http://dx.doi.org/10.1002/star.20060050710.1002/star.200600507Search in Google Scholar

[30] Zhang, L. M. (2001). Cellulosic associative thickeners. Carbohydrate Polymers, 45, 1–10. DOI: 10.1016/SO144.8617(00) 00276-9. http://dx.doi.org/10.1016/S0144-8617(00)00276-910.1016/S0144-8617(00)00276-9Search in Google Scholar

[31] Žoldáková, A., Sroková, I., Sasinková, V., Hirsch, J., & Ebringerová, A. (2005). Biosurfactants based on partially esterified O-(carboxymethyl)starch. Chemical Papers, 59, 362–367. Search in Google Scholar

Published Online: 2008-11-20
Published in Print: 2009-2-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 28.1.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-008-0088-x/html
Scroll to top button