Abstract
Moisture content (MC) of green biomass or raw biomass materials (wood, bark, plants, etc.) commonly exceeds 50 mass % (wet basis). The maximum possible MC of biomass fuel for big scale combustion (e.g. fluidized bed combustion with low external heat losses) is approximately 60–65 mass %. Higher biomass MC generally causes operational problems of biomass combustors, lower stability of burning and higher CO and VOC emissions. Gasification of biomass with higher MC produces fuel gas of lower effective heating values and higher tar concentrations. In this review, various technological schemes for wood drying in combination with combustion/gasification with the assessment of factors for possible minimization of emissions of organics from the drying processes are compared. The simple direct flue gas biomass drying technologies lead to exhaust drying gases containing high VOC emissions (terpenes, alcohols, organic acids, etc.). VOC emissions depend on the drying temperature, residence time and final MC of the dried biomass. Indirect biomass drying has an advantage in the possibility of reaching very low emissions of organic compounds from the drying process. Exhaust drying gases can be simply destroyed as a part of the total combustion air (gas) in a combustion chamber or a gasifier. Liquid, condensed effluents have to be treated properly because they have relatively high content of organic compounds, some of them accompanied by odor. Drying of biomass with superheated steam offers more uniform drying of both small and bigger particles and shorter periods of higher temperatures of the dried biomass, particularly if drying to the final MC below 15 mass % is required. In practical modern drying technologies, biomass (mainly wood) is dried in recirculated gas of relatively high humidity (approaching saturation) and the period of constant rate drying is longer. Drying of moist wood material (saw dust, chips, etc.) is required in wood pellet production. Emissions of organics in drying depend on biomass properties, content of resins, storing time and on operational aspects of the drying process: drying temperature, drying medium, final MC, residence time, and particle size distribution of the dried biomass (wood). Integration of biomass drying with combustion/gasification processes includes the choice of the drying medium (flue gas, air, superheated steam). Properties of the drying media and operational parameters are strongly dependent on local conditions, fuel input of the combustion/gasification unit, cleaning of the exhaust drying media (gas, steam, wastewater), and on environmental factors and requirements.
[1] Arshadi, M., & Gref, R. (2005). Emission of volatile organic compounds from softwood pellets during storage. Forest Products Journal, 55(12), 132–135. Search in Google Scholar
[2] Banerjee, S., Su, W., Wild, M. P., Otwell, L. P., Hittmeier, M. E., & Nichols, K.M. (1998). Wet line extension reduces VOCs from softwood drying. Environmental Science & Technology, 32, 1303–1307. DOI: 10.1021/es970849o. http://dx.doi.org/10.1021/es970849o10.1021/es970849oSearch in Google Scholar
[3] Bengtsson, P. (2004). The release of hydrocarbon from softwood drying: Measurement and modeling. Maderas. Ciencia y Tecnologia, 6, 109–122. 10.4067/S0718-221X2004000200002Search in Google Scholar
[4] Berghel, J., & Renström, R. (2002). Basic design criteria and corresponding results performance of a pilot-scale fluidized superheated atmospheric condition steam dryer. Biomass and Bioenergy, 23, 103–112. DOI: 10.1016/S0961-9534(02)00040-5. http://dx.doi.org/10.1016/S0961-9534(02)00040-510.1016/S0961-9534(02)00040-5Search in Google Scholar
[5] Bhattacharya, S. C., Albina, D. O., & Khaing, A. M. (2002). Effects of selected parameters on performance and emission of biomass-fired cook-stoves. Biomass and Bioenergy, 23, 387–395. DOI: 10.1016/S0961-9534(02)00062-4. http://dx.doi.org/10.1016/S0961-9534(02)00062-410.1016/S0961-9534(02)00062-4Search in Google Scholar
[6] Björk, H., & Rasmuson, A. (1995). Moisture equilibrium of wood and bark chips in superheated steam. Fuel, 74, 1887–1890. DOI: 10.1016/0016-2361(95)80024-C. http://dx.doi.org/10.1016/0016-2361(95)80024-C10.1016/0016-2361(95)80024-CSearch in Google Scholar
[7] Björk, H., & Rasmuson, A. (1996). Formation of organic compounds in superheated steam dying of bark chips. Fuel, 75, 81–84. DOI: 10.1016/0016-2361(95)00154-9. http://dx.doi.org/10.1016/0016-2361(95)00154-910.1016/0016-2361(95)00154-9Search in Google Scholar
[8] Brammer, J. G., & Bridgewater, A. V. (1999). Drying technologies for an integrated gasification bio-energy plant. Renewable and Sustainable Energy Reviews, 3, 243–289. DOI: 10.1016/S1364-0321(99)00008-8. http://dx.doi.org/10.1016/S1364-0321(99)00008-810.1016/S1364-0321(99)00008-8Search in Google Scholar
[9] Brammer, J. G., & Bridgewater, A. V. (2002). The influence of feedstock drying on the performance and economics of a biomass gasifier-engine CHP system. Biomass and Bioenergy, 22, 271–281. DOI: 10.1016/S0961-9534(02)00003-X. http://dx.doi.org/10.1016/S0961-9534(02)00003-X10.1016/S0961-9534(02)00003-XSearch in Google Scholar
[10] Danielsson, S., & Rasmuson, A. (2002). The influence of drying medium, temperature, and time on the release of monoterpenes during convective drying of wood chips. Drying Technology, 20, 1427–1444. DOI: 10.1081/DRT-120005860. http://dx.doi.org/10.1081/DRT-12000586010.1081/DRT-120005860Search in Google Scholar
[11] Fagernäs, L. (1993). Formation and behaviour of organic compounds in biomass dryers. Bioresource Technology, 46, 71–76. DOI: 10.1016/0960-8524(93)90056-H. http://dx.doi.org/10.1016/0960-8524(93)90056-H10.1016/0960-8524(93)90056-HSearch in Google Scholar
[12] Fagernäs, L., & Sipilä, K. (1996). Emissions from biomass drying. In A. V. Bridgwater & D. G. B. Boocock (Eds.), Proceedings of the International Conference on Developments in Thermochemical Biomass Conversion, 20–24 May, 1996 (p. 15). Banff, Canada. Search in Google Scholar
[13] Fang, M. X., Shen, D. K., Li, Y. X., Yu, C. J., Luo, Z. Y., & Cen, K. F. (2006). Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TGFTIR analysis. Journal of Analytical and Applied Pyrolysis, 77, 22–27. DOI: 10.1016/j.jaap.2005.12.010. http://dx.doi.org/10.1016/j.jaap.2005.12.01010.1016/j.jaap.2005.12.010Search in Google Scholar
[14] Fitzpatrick, J. J., & Lynch, D. (1995). Thermodynamic analysis of the energy saving potential of superheated steam drying. Food and Bioproducts Processing: Transactions of the Institution of Chemical Engineers, 73, 3–8. Search in Google Scholar
[15] Gómez, C. J., Mészáros, E., Jakab, E., Velo, E., & Puigjaner, L. (2007). Thermo-gravimetric/mass spectrometry study of woody residues and an herbaceous biomass crop using PCA techniques. Journal of Analytical and Applied Pyrolysis, 80, 416–456. DOI: 10.1016/j.jaap.2007.05.003. http://dx.doi.org/10.1016/j.jaap.2007.05.00310.1016/j.jaap.2007.05.003Search in Google Scholar
[16] Granström, K. (2003). Emissions of monoterpenes and VOCs during drying of sawdust in a spouted bed. Forest Products Journal, 53(10), 48–55. Search in Google Scholar
[17] Gruber, T. (2001). Drying of wood chips with optimized energy consumption and emission levels, combined with production of valuable substances. In Proceedings of the 3rd European COST E15 Workshop on Wood Drying 2001, 11–13 June 2001. Helsinki, Finland. Search in Google Scholar
[18] Holmberg, H., & Ahtila, P. (2004). Comparison of drying costs in biofuel drying between multi-stage and single-stage drying. Biomass and Bioenergy, 26, 515–530. DOI: 10.1016/j.biombioe.2003.09.007. http://dx.doi.org/10.1016/j.biombioe.2003.09.00710.1016/j.biombioe.2003.09.007Search in Google Scholar
[19] Ingram, L. L., Shmulsky, R., Dalton, A. T., Taylor, F. W., & Templeton, M. C. (2000). The measurement of volatile organic emissions from drying southern pine lumber in a laboratory-scale kiln. Forest Products Journal, 50(4), 91–94. Search in Google Scholar
[20] Johansson, A., Fyhr, C., & Rasmuson, A. (1997). High temperature convective drying of wood chips with air and superheated steam. International Journal of Heat and Mass Transfer, 40, 2843–2858. DOI: 10.1016/S0017-9310(96)00341-9. http://dx.doi.org/10.1016/S0017-9310(96)00341-910.1016/S0017-9310(96)00341-9Search in Google Scholar
[21] Johansson, L. S., Leckner, B., Gustavsson, L., Cooper, D., Tullin, C., & Potter, A. (2004). Emissions characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmospheric Environment, 38, 4183–4195. DOI: 10.1016/j.atmosenv.2004.04.020. http://dx.doi.org/10.1016/j.atmosenv.2004.04.02010.1016/j.atmosenv.2004.04.020Search in Google Scholar
[22] Lehtikangas, P. (2000). Storage effects on pelletized sawdust, logging residues and bark. Biomass and Bioenergy, 19, 287–293. DOI: 10.1016/S0961-9534(00)00046-5. http://dx.doi.org/10.1016/S0961-9534(00)00046-510.1016/S0961-9534(00)00046-5Search in Google Scholar
[23] Lehtikangas, P. (2001). Quality properties of pelletized sawdust, logging residues and bark. Biomass and Bioenergy, 20, 351–360. DOI: 10.1016/S0961-9534(00)00092-1. http://dx.doi.org/10.1016/S0961-9534(00)00092-110.1016/S0961-9534(00)00092-1Search in Google Scholar
[24] Makowski, M., Ohlmeyer M., & Meier, D. (2005). Long-term development of VOC emissions from OSB after hot-pressing. Holzforschung, 59, 519–523. DOI: 10.1515/HF.2005.086. http://dx.doi.org/10.1515/HF.2005.08610.1515/HF.2005.086Search in Google Scholar
[25] McIlveen-Wright, D. R., Williams, B. C., & McMullan, J. T. (2001). A re-appraisal of wood-fired combustion. Bioresource Technology, 76, 183–190. DOI: 10.1016/S0960-8524(00)001292. http://dx.doi.org/10.1016/S0960-8524(00)00129-2Search in Google Scholar
[26] Moreno, R., Antolín, G., Reyes, A., & Alvarez, P. (2004). Drying characteristics of forest biomass particles of Pinus radiate. Biosystems Engineering, 88, 105–115. DOI: 10.1016/j.biosystemseng.2004.02.005. http://dx.doi.org/10.1016/j.biosystemseng.2004.02.00510.1016/j.biosystemseng.2004.02.005Search in Google Scholar
[27] Olsson, M., & Kjällstrand, J. (2004). Emissions from burning of softwood pellets. Biomass and Bioenergy, 27, 607–611. DOI: 10.1016/j.biombioe.2003.08.018. http://dx.doi.org/10.1016/j.biombioe.2003.08.01810.1016/j.biombioe.2003.08.018Search in Google Scholar
[28] Otwell, L. P., Hittmeier, M. E., Hooda, U., Yan, H., Su, W., & Banerjee, S. (2000). HAPs release from wood drying. Environmental Science & Technology, 34, 2280–2283. DOI: 10.1021/es991083q. http://dx.doi.org/10.1021/es991083q10.1021/es991083qSearch in Google Scholar
[29] Pakowski, Z., Krupinska, B., & Adamski, R. (2007). Prediction of sorption equilibrium both in air and superheated steam drying of energetic variety of willow (Salix viminalis) in a wide temperature range. Fuel, 86, 1749–1757. DOI: 10.1016/j.fuel.2007.01.016. http://dx.doi.org/10.1016/j.fuel.2007.01.01610.1016/j.fuel.2007.01.016Search in Google Scholar
[30] Prins, M. J., Ptasinski, K. J., & Janssen, F. J. J. G. (2006a). Torrefaction of wood, Part 1. Weight loss kinetics. Journal of Analytical and Applied Pyrolysis, 77, 28–34. DOI: 10.1016/j.jaap.2006.01.002. http://dx.doi.org/10.1016/j.jaap.2006.01.00210.1016/j.jaap.2006.01.002Search in Google Scholar
[31] Prins, M. J., Ptasinski, K. J., & Janssen, F. J. J. G. (2006b). Torrefaction of wood, Part 2. Analysis of products. Journal of Analytical and Applied Pyrolysis, 77, 35–40. DOI: 10.1016/j.jaap.2006.01.001. http://dx.doi.org/10.1016/j.jaap.2006.01.00110.1016/j.jaap.2006.01.001Search in Google Scholar
[32] Raghavan, G. S. V., Rennie, T. J., Sunjka, P. S., Orsat, V., Phaphuangwittayakul, W., & Terdtoon, P. (2005). Overview of new techniques for drying biological materials with emphasis on energy aspects. Brasilian Journal of Chemical Engineering, 22, 195–201. DOI: 10.1590/S0104-66322005000200005. 10.1590/S0104-66322005000200005Search in Google Scholar
[33] Renström, R., & Berghel, J. (2002). Drying of sawdust in an atmospheric pressure spouted bed steam dryer. Drying Technology, 20, 449–464. DOI: 10.1081/DRT-120002551. http://dx.doi.org/10.1081/DRT-12000255110.1081/DRT-120002551Search in Google Scholar
[34] Renström, R., Lindquist, L., & Wikström, F. (2004). Study of the environmental impact of wood fuel processing. In Drying 2004 — Proceedings of the 14-th International Drying Symposium, 22–25 August, 2004, Vol. B (pp. 986–989). São Paulo, Brazil. Search in Google Scholar
[35] Rhén, C., Gref, R., Sjöström, M., & Wästerlund, I. (2005). Effects of raw material moisture content, densification pressure and temperature on some properties of Norway spruce pellets. Fuel Processing Technology, 87, 11–16. DOI: 10.1016/j.fuproc.2005.03.003. http://dx.doi.org/10.1016/j.fuproc.2005.03.00310.1016/j.fuproc.2005.03.003Search in Google Scholar
[36] Rupar, K., & Sanati, M. (2003). The release of organic compounds during biomass drying upon the feedstock and/or altering drying heating medium. Biomass and Bioenergy, 25, 615–622. DOI: 10.1016/S0961-9534(03)00055-2. http://dx.doi.org/10.1016/S0961-9534(03)00055-210.1016/S0961-9534(03)00055-2Search in Google Scholar
[37] Samuelsson, R., Nilsson, C., & Burvall, J. (2006). Sampling and GC-MS as a method for analysis of volatile organic compounds (VOC) emitted during oven drying of biomass materials. Biomass and Bioenergy, 30, 923–928. DOI: 10.1016/j.biombioe.2006.06.003. http://dx.doi.org/10.1016/j.biombioe.2006.06.00310.1016/j.biombioe.2006.06.003Search in Google Scholar
[38] Schuster, G., Löffler, G., Weigl, K., & Hofbauer, H. (2001). Biomass steam gasification — an extensive parametric modeling study. Bioresource Technology, 77, 71–79. DOI: 10.1016/S0960-8524(00)00115-2. http://dx.doi.org/10.1016/S0960-8524(00)00115-210.1016/S0960-8524(00)00115-2Search in Google Scholar
[39] Spets, J. P., & Ahtila, P. (2002). Improving the power-to-heat ratio in CHP plants by means of a biofuel multistage drying system. Applied Thermal Engineering, 22, 1175–1180. DOI: 10.1016/S1359-4311(02)00045-5. http://dx.doi.org/10.1016/S1359-4311(02)00045-510.1016/S1359-4311(02)00045-5Search in Google Scholar
[40] Spets, J. P., & Ahtila, P. (2004). Reduction of organic emissions by using a multistage drying system for wood-based biomasses. Drying Technology, 22, 541–561. DOI: 10.1081/DRT-120030000. http://dx.doi.org/10.1081/DRT-12003000010.1081/DRT-120030000Search in Google Scholar
[41] Stahl, M., Granström, K., Berghel, J., & Renström, R. (2004). Industrial processes for biomass drying and their effects on the quality properties of wood pellets. Biomass and Bioenergy, 27, 621–628. DOI: 10.1016/j.biombioe.2003.08.019. http://dx.doi.org/10.1016/j.biombioe.2003.08.01910.1016/j.biombioe.2003.08.019Search in Google Scholar
[42] Su, W., Yan, H., Banerjee, S., Otwell, L. P., & Hittmeier, M. E. (1999). Field-proven strategies for reducing volatile carbons from hardwood drying. Environmental Science & Technology, 33, 1056–1059. DOI: 10.1021/es980453s. http://dx.doi.org/10.1021/es980453s10.1021/es980453sSearch in Google Scholar
[43] Tsujiyama, S., & Miyamori, A. (2000). Assignment of DSC thermograms of wood and its components. Thermochimica Acta, 351, 177–181. DOI: 10.1016/S0040-6031(00)00429-9. http://dx.doi.org/10.1016/S0040-6031(00)00429-910.1016/S0040-6031(00)00429-9Search in Google Scholar
[44] van Deventer, H. C. (2004). Industrial superheated steam drying. TNO-report R 2004/239. Apeldoorn, The Netherlands: TNO Environment, Energy and Process Innovation. http://gasunie.eldoc.ub.rug.nl/FILES/root/2004/3337003/3337003.pdf Search in Google Scholar
[45] Vinterbäck, J. (2004). Pellets 2002: the first world conference on pellets. Biomass and Bioenergy, 27, 513–520. DOI: 10.1016/j.biombioe.2004.05.005. http://dx.doi.org/10.1016/j.biombioe.2004.05.00510.1016/j.biombioe.2004.05.005Search in Google Scholar
[46] Wimmerstedt, R. (1999). Recent advances in biofuel drying. Chemical Engineering and Processing, 38, 441–447. DOI: 10.1016/S0255-2701(99)00041-0. http://dx.doi.org/10.1016/S0255-2701(99)00041-010.1016/S0255-2701(99)00041-0Search in Google Scholar
© 2008 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Polymer interfaces used in electrochemical DNA-based biosensors
- Integration of biomass drying with combustion/gasification technologies and minimization of emissions of organic compounds
- Application of hydrocolloids as baking improvers
- Simultaneous determination of 118 pesticide residues in Chinese teas by gas chromatography-mass spectrometry
- Modifications of spectrophotometric methods for total phosphorus determination in meat samples
- Modification and characterization of montmorillonite fillers used in composites with vulcanized natural rubber
- A new approach to nickel electrolytic colouring of anodised aluminium
- Solvent-free synthesis and properties of carboxymethyl starch fatty acid ester derivatives
- Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites
- Chemometrical analysis of computed QSAR parameters and their use in biological activity prediction
- Mild and efficient conversion of trifluoromethylarenes into tribromomethylarenes using boron tribromide
- 1,3-Dibromo-5,5-dimethylhydantoin as a useful reagent for efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions
- A new xanthone from the roots of Securidaca inappendiculata
Articles in the same Issue
- Polymer interfaces used in electrochemical DNA-based biosensors
- Integration of biomass drying with combustion/gasification technologies and minimization of emissions of organic compounds
- Application of hydrocolloids as baking improvers
- Simultaneous determination of 118 pesticide residues in Chinese teas by gas chromatography-mass spectrometry
- Modifications of spectrophotometric methods for total phosphorus determination in meat samples
- Modification and characterization of montmorillonite fillers used in composites with vulcanized natural rubber
- A new approach to nickel electrolytic colouring of anodised aluminium
- Solvent-free synthesis and properties of carboxymethyl starch fatty acid ester derivatives
- Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites
- Chemometrical analysis of computed QSAR parameters and their use in biological activity prediction
- Mild and efficient conversion of trifluoromethylarenes into tribromomethylarenes using boron tribromide
- 1,3-Dibromo-5,5-dimethylhydantoin as a useful reagent for efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions
- A new xanthone from the roots of Securidaca inappendiculata