Abstract
Parent Ca-montmorillonite (Jelšový Potok, Slovakia, Ca-JP) and Na-montmorillonite Kunipia-F (Japan, Na-KU) were ion-exchanged with octadecyltrimethylammonium (ODTMA) cations. Characteristics of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR) and thermogravimetry (TG). Surface areas were measured by sorption of N2 and ethyleneglycol monoethyl ether. Scanning electron microscopy photographs (SEM) were used to characterize the texture of samples. The XRD patterns show that, upon intercalation, the basal spacing of montmorillonite is expanded and corresponds to the pseudotrimolecular arrangement of organic cations in the interlayers. The IR spectra of organically modified montmorillonite show C-H stretching and bending bands of both CH3 and CH2 groups in the 3000–2800 cm−1 and 1500–1400 cm−1 region, respectively. Modification of montmorillonite by organic cations decreased the hydrophilicity of their mineral surface and adsorbed water evaporated at lower temperatures. The SEM photographs reveal a tendency towards lump formation and agglomeration of the ODTMA-montmorillonite particles. The modification introducing organic moiety lead to a substantial decrease in the surface area of both montmorillonites; however, it remained remarkably high, being at the level typical for silica. Completely characterized fillers were used to prepare rubber compositions with enhanced physical properties, as described in Hrachová et al. (2008).
[1] Alexandre, M., & Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science & Engineering, R28, 1–63. DOI: 10.1016/S0927-796X(00)00012-7. http://dx.doi.org/10.1016/S0927-796X(00)00012-710.1016/S0927-796X(00)00012-7Suche in Google Scholar
[2] Arroyo, M., López-Manchado, M. A., & Herrero, B. (2003). Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer, 44, 2447–2453. DOI: 10.1016/S0032-3861(03)00090-9. http://dx.doi.org/10.1016/S0032-3861(03)00090-910.1016/S0032-3861(03)00090-9Suche in Google Scholar
[3] Bokobza, L., & Chauvin, J.-P. (2005). Reinforcement of natural rubber: use of in situ generated silicas and nanofibres of sepiolite. Polymer, 46, 4144–4151. DOI: 10.1016/j.polymer.2005.02.048. http://dx.doi.org/10.1016/j.polymer.2005.02.04810.1016/j.polymer.2005.02.048Suche in Google Scholar
[4] Farmer, V. C. (1974). The layer silicates. In V. C. Farmer (Ed.), Infrared spectra of minerals (pp. 331–363). London: Mineralogical Society. Suche in Google Scholar
[5] Farmer, V. C. (2000). Tranverse and longitudinal crystal modes associated with OH stretching vibrations in single crystals of kaolinite and dickite. Spectrochimica Acta Part A, 56, 927–930. DOI: 10.1016/S1386-1425(99)00182-1. http://dx.doi.org/10.1016/S1386-1425(99)00182-110.1016/S1386-1425(99)00182-1Suche in Google Scholar
[6] Gillman, G. P. (1979). Proposed method for the measurement of exchange properties of highly weathered soils. Australian Journal of Soil Research, 17, 129–139. DOI: 10.1071/SR9790129. http://dx.doi.org/10.1071/SR979012910.1071/SR9790129Suche in Google Scholar
[7] Gilman, J. W. (1999). Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Applied Clay Science, 15, 31–49. DOI: 10.1016/S0169-1317(99)000198. http://dx.doi.org/10.1016/S0169-1317(99)00019-8Suche in Google Scholar
[8] Hlavatý, V., & Fajnor, V. Š. (2002). Thermal stability of clay/organic intercalation complexes. Journal of Thermal Analysis & Calorimetry, 67, 113–118. DOI: 10.1023/A:1013789931016. http://dx.doi.org/10.1023/A:101378993101610.1023/A:1013789931016Suche in Google Scholar
[9] Hrachová, J., Komadel, P., & Chodák, I. (2008). Effect of montmorillonite modification on mechanical properties of vulcanized natural rubber composites. Journal of Materials Science, 43, 2012–2017. DOI: 10.1007/s10853-007-2438-4. http://dx.doi.org/10.1007/s10853-007-2438-410.1007/s10853-007-2438-4Suche in Google Scholar
[10] Kader, M. A., Kim, K., Lee, Y.-S., & Nah, C. (2006). Preparation and properties of nitrile rubber/montmorillonite nanocomposites via latex blending. Journal of Materials Science, 41, 7341–7352. DOI: 10.1007/s10853-006-0792-2. http://dx.doi.org/10.1007/s10853-006-0792-210.1007/s10853-006-0792-2Suche in Google Scholar
[11] Leblanc, J. L. (2002). Ruber-filler interactions and rheological properties in filled compounds. Progress in Polymer Science, 27, 627–687. DOI: 10.1016/S0079-6700(01)00040-5. http://dx.doi.org/10.1016/S0079-6700(01)00040-510.1016/S0079-6700(01)00040-5Suche in Google Scholar
[12] Lee, Y.-S., & Kim, S. J. (2002). Expansion characteristics of organoclay as a precursor to nanocomposites. Colloids and Surfaces A: Physicochemical & Engineering Aspects, 211, 19–26. DOI: 10.1016/S0927-7757(02)00215-7. http://dx.doi.org/10.1016/S0927-7757(02)00215-710.1016/S0927-7757(02)00215-7Suche in Google Scholar
[13] MacEwan, D. M. C., & Wilson, M. J. (1980). Interlayer and intercalation complexes of clay minerals. In G. W. Brindlay, & G. Brown (Eds.), Crystal structures of clay minerals and their X-ray identification (pp. 197–248). London: Mineralogical Society. Suche in Google Scholar
[14] Madejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31, 1–10. DOI: 10.1016/S0924-2031(02)00065-6. http://dx.doi.org/10.1016/S0924-2031(02)00065-610.1016/S0924-2031(02)00065-6Suche in Google Scholar
[15] Madejová, J., Kečkéš, J., Pálková, H., & Komadel, P. (2002). Identification of components in smectite/kaolinite mixture. Clay Minerals, 37, 377–388. DOI: 10.1180/0009855023720042. http://dx.doi.org/10.1180/000985502372004210.1180/0009855023720042Suche in Google Scholar
[16] Mandalia, T., & Bergaya, F. (2006). Organo clay mineral-melted polyolefin nanocomposites. Effect of surfactant/CEC ratio. Journal of Physics & Chemistry of Solids, 67, 836–845. DOI: 10.1016/j.jpcs.2005.12.007. http://dx.doi.org/10.1016/j.jpcs.2005.12.00710.1016/j.jpcs.2005.12.007Suche in Google Scholar
[17] Mermut, A. R., & Lagaly, G. (2001). Baseline studies of The Clay Minerals Society Source Clays: Layer-charge determination and characteristics of those minerals containing 2:1 layers. Clays & Clay Minerals, 49, 393–397. http://dx.doi.org/10.1346/CCMN.2001.049050610.1346/CCMN.2001.0490506Suche in Google Scholar
[18] Novák, I., & Číčel, B. (1972). Refinement of surface area determining of clays by ethylene glycol monoethyl ether (EGME) retention. In J. Konta (Ed.), Proceedings of the Fifth Conference on Clay Mineralogy and Petrology (pp. 123–129). Prague: Charles University. Suche in Google Scholar
[19] Ray, S. S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28, 1539–1641. DOI: 10.1016/j.progpolymsci.2003.08.002. http://dx.doi.org/10.1016/j.progpolymsci.2003.08.00210.1016/j.progpolymsci.2003.08.002Suche in Google Scholar
[20] Ray, S. S., & Bousmina, M. (2005). Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in Materials Science, 50, 962–1079. DOI: 10.1016/j.pmatsci.2005.05.002. http://dx.doi.org/10.1016/j.pmatsci.2005.05.00210.1016/j.pmatsci.2005.05.002Suche in Google Scholar
[21] Šamajová, E., Kraus, I., & Lajčáková, A. (1992). Diagenetic alteration of miocene acidic vitric tuffs of the Jastraba formation (Kremnické vrchy MTS., Western Carpathians). Geologica Carpathica. Clays, 1, 21–26. Suche in Google Scholar
[22] Teh, P. L., Mohd Ishak, Z. A., Hashim, A. S., Karger-Kocsis, J., & Ishiaku, U. S. (2004). Effects of epoxidized natural rubber as a compatibilizer in melt compounded natural rubberorganoclay nanocomposites. European Polymer Journal, 40, 2513–2521. DOI: 10.1016/j.eurpolymj.2004.06.025. http://dx.doi.org/10.1016/j.eurpolymj.2004.06.02510.1016/j.eurpolymj.2004.06.025Suche in Google Scholar
[23] Tjong, S. C. (2006). Structural and mechanical properties of polymer nanocomposites. Materials Science & Engineering, R53, 73–197. DOI: 10.1016/j.mser.2006.06.001. 10.1016/j.mser.2006.06.001Suche in Google Scholar
[24] Valadares, L. F., Leite, C. A. P., & Galembeck, F. (2006). Preparation of natural rubber-montmorillonite nanocomposite in aqueous medium: evidence for polymer-platelet adhesion. Polymer, 47, 672–678. DOI: 10.1016/j.polymer.2005.11.062. http://dx.doi.org/10.1016/j.polymer.2005.11.06210.1016/j.polymer.2005.11.062Suche in Google Scholar
[25] Varghese, S., Karger-Kocsis, J., & Gatos, K. G. (2003). Melt compounded epoxidized natural rubber/layered silicate nanocomposites: structure-properties relationships. Polymer, 44, 3977–3983. DOI: 10.1016/S0032-3861(03)00358-6. http://dx.doi.org/10.1016/S0032-3861(03)00358-610.1016/S0032-3861(03)00358-6Suche in Google Scholar
[26] Yariv, S. (2004). The role of charcoal on DTA curves of organoclay complexes: an overview. Applied Clay Science, 24, 225–236. DOI: 10.1016/j.clay.2003.04.002. http://dx.doi.org/10.1016/j.clay.2003.04.00210.1016/j.clay.2003.04.002Suche in Google Scholar
© 2008 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Polymer interfaces used in electrochemical DNA-based biosensors
- Integration of biomass drying with combustion/gasification technologies and minimization of emissions of organic compounds
- Application of hydrocolloids as baking improvers
- Simultaneous determination of 118 pesticide residues in Chinese teas by gas chromatography-mass spectrometry
- Modifications of spectrophotometric methods for total phosphorus determination in meat samples
- Modification and characterization of montmorillonite fillers used in composites with vulcanized natural rubber
- A new approach to nickel electrolytic colouring of anodised aluminium
- Solvent-free synthesis and properties of carboxymethyl starch fatty acid ester derivatives
- Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites
- Chemometrical analysis of computed QSAR parameters and their use in biological activity prediction
- Mild and efficient conversion of trifluoromethylarenes into tribromomethylarenes using boron tribromide
- 1,3-Dibromo-5,5-dimethylhydantoin as a useful reagent for efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions
- A new xanthone from the roots of Securidaca inappendiculata
Artikel in diesem Heft
- Polymer interfaces used in electrochemical DNA-based biosensors
- Integration of biomass drying with combustion/gasification technologies and minimization of emissions of organic compounds
- Application of hydrocolloids as baking improvers
- Simultaneous determination of 118 pesticide residues in Chinese teas by gas chromatography-mass spectrometry
- Modifications of spectrophotometric methods for total phosphorus determination in meat samples
- Modification and characterization of montmorillonite fillers used in composites with vulcanized natural rubber
- A new approach to nickel electrolytic colouring of anodised aluminium
- Solvent-free synthesis and properties of carboxymethyl starch fatty acid ester derivatives
- Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites
- Chemometrical analysis of computed QSAR parameters and their use in biological activity prediction
- Mild and efficient conversion of trifluoromethylarenes into tribromomethylarenes using boron tribromide
- 1,3-Dibromo-5,5-dimethylhydantoin as a useful reagent for efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions
- A new xanthone from the roots of Securidaca inappendiculata