Home Design and economics of industrial production of fructooligosaccharides
Article
Licensed
Unlicensed Requires Authentication

Design and economics of industrial production of fructooligosaccharides

  • Katarína Vaňková EMAIL logo , Zdenka Onderková , Monika Antošová and Milan Polakovič
Published/Copyright: June 30, 2008
Become an author with De Gruyter Brill

Abstract

A process for industrial production of fructooligosaccharides (FOS’s) based on the conversion of sucrose by immobilized fructosyltransferase (FTase) from the cells of Aureobasidium pullulans CCY 27-1-94 was developed. Particular process operations and conditions were designed employing results of laboratory and semi-pilot scale experiments. The process flowsheet comprised three sections: FTase production, which included fermentation, isolation and purification of the enzyme, FTase immobilization and FOS’s production where a product with a high content of FOS’s was prepared by the removal of glucose, fructose and unreacted sucrose from the reaction mixture using simulated moving-bed chromatography. Two alternative process flowsheets were proposed for the annual production of 10 000 t of FOS’s: one for a powdery product and the second one for syrup. The economic analysis provided the costs for the production of immobilized FTase and FOS’s using two different price estimates for sucrose.

[1] Aboudzadeh, M. R., Jiawen, Z., & Bin, W. (2006). Modeling of protein adsorption to DEAE Sepharose FF: Comparison of data with model simulation. Korean Journal of Chemical Engineering, 23, 124–130. DOI: 10.1007/BF02705703. http://dx.doi.org/10.1007/BF0270570310.1007/BF02705703Search in Google Scholar

[2] Aydogan, N., Gurkan, T., & Yilmaz, L. (1998). Effect of operating parameters on the separation of sugars by nanofiltration. Separation Science and Technology, 33, 1767–1785. http://dx.doi.org/10.1080/0149639980854590410.1080/01496399808545904Search in Google Scholar

[3] Bekers, M., Laukevics, J., Upite, D., Kaminska, E., Vigants, A., Viesturs, U., Pankova, L., & Danilevics, A. (2002). Fructooligosaccharide and levan producing activity of Zymomonas mobilis extracellular levansucrase. Process Biochemistry, 38, 701–706. DOI: 10.1016/S0032-9592(02)00189-9. http://dx.doi.org/10.1016/S0032-9592(02)00189-910.1016/S0032-9592(02)00189-9Search in Google Scholar

[4] Crittenden, R. G., & Playne, M. J. (1996). Production, properties and applications of food-grade oligosaccharides. Trends in Food Science & Technology, 7, 353–361. DOI: 10.1016/S0924-2244(96) 10038-8. http://dx.doi.org/10.1016/S0924-2244(96)10038-810.1016/S0924-2244(96)10038-8Search in Google Scholar

[5] Flamm, G., Glinsmann, W., Kritchevsky, D., Prosky, L., & Roberfroid, M. (2001). Inulin and oligofructose as dietary fiber: a review of the evidence. Critical Reviews in Food Science and Nutrition, 41, 353–362. DOI: 10.1080/20014091091841. http://dx.doi.org/10.1080/2001409109184110.1080/20014091091841Search in Google Scholar

[6] Franck, A. (2002). Technological functionality of inulin and oligofructose. British Journal of Nutrition, 87, 287–291. DOI: 10.1079/BJN/2002550. 10.1079/BJN/2002550Search in Google Scholar

[7] Garleb, K. A., Snook, J. T., Marcon, M. J., Wolf, B. W., & Johnson, W. A. (1996). Effect of fructooligosaccharide containing enteral formulas on subjective tolerance factors, serum chemistry profiles, and feacal bifidobacteria in healthy adult male subjects. Microbial Ecology in Health and Disease, 9, 279–285. http://dx.doi.org/10.1002/(SICI)1234-987X(199611)9:6<279::AID-MEH440>3.3.CO;2-W10.1002/(SICI)1234-987X(199611)9:6<279::AID-MEH440>3.3.CO;2-WSearch in Google Scholar

[8] Ghazi, I., Fernandez-Arrojo, L., Garcia-Arellano, H., Ferrer, M., Ballesteros, A., & Plou, F. J. (2007). Purification and kinetic characterization of a fructosyltransferase from Aspergillus aculeatus. Journal of Biotechnology, 128, 204–211. DOI: 10.1016/j.jbiotec.2006.09.017. http://dx.doi.org/10.1016/j.jbiotec.2006.09.01710.1016/j.jbiotec.2006.09.017Search in Google Scholar

[9] Goulas, A. K., Kapasakalidis, P. G., Sinclair, H. R., Rastall, R. A., & Grandison, A. S. (2002). Purification of oligosaccha-rides by nanofiltration. Journal of Membrane Science, 209, 321–335. DOI: 10.1016/S0376-7388(02)00362-9. http://dx.doi.org/10.1016/S0376-7388(02)00362-910.1016/S0376-7388(02)00362-9Search in Google Scholar

[10] Gramblička, M., & Polakovič, M. (2007). Adsorption equilibria of glucose, fructose, sucrose, and fructooligosaccharides on cation exchange resin. Journal of Chemical & Engineering Data, 52, 345–350. DOI: 10.1021/je060169d. http://dx.doi.org/10.1021/je060169d10.1021/je060169dSearch in Google Scholar

[11] Heinzle, E., Biwer, A. P., & Cooney, C. L. (2006). Development of sustainable bioprocesses. Hoboken: John Wiley & Sons. Search in Google Scholar

[12] Charton, F., & Nicoud, R.-M. (1995). Complete design of a simulated moving bed. Journal of Chromatography A, 702, 97–112. DOI: 10.1016/0021-9673(94)01026-B. http://dx.doi.org/10.1016/0021-9673(94)01026-B10.1016/0021-9673(94)01026-BSearch in Google Scholar

[13] Chen, W. C., & Liu, C. H. (1996). Production of beta-fructofuranosidase by Aspergillus japonicus. Enzyme and Microbial Technology, 18, 153–160. DOI: 10.1016/0141-0229(95)00099-2. http://dx.doi.org/10.1016/0141-0229(95)00099-210.1016/0141-0229(95)00099-2Search in Google Scholar

[14] Chien, C.-S., Lee, W.-C., & Lin, T.-J. (2001). Immobilization of Aspergillus japonicus by entrapping cells in gluten for production of fructooligosaccharides. Enzyme and Microbial Technology, 29, 252–257. DOI: 10.1016/S0141-0229(01)00384-2. http://dx.doi.org/10.1016/S0141-0229(01)00384-210.1016/S0141-0229(01)00384-2Search in Google Scholar

[15] Jung, K. H., Yun, J. W., Kang, K. R., Lim, J. Y., & Lee, J. H. (1989). Mathematical model for enzymatic production of fructo-oligosaccharides from sucrose. Enzyme and Microbial Technology, 11, 491–494. DOI: 10.1016/0141-0229(89)90029-X. http://dx.doi.org/10.1016/0141-0229(89)90029-X10.1016/0141-0229(89)90029-XSearch in Google Scholar

[16] Kim, B. W., Kishihara, S., & Satoshi, F. (1992). Simultaneously continuous separation of glucose,maltose, and maltotriose using a simulated moving-bed adsorbent. Bioscience, Biotechnology, and Biochemistry, 56, 801–802. Search in Google Scholar

[17] L’Hocine, L., Wang, Z., Jiang, B., & Xu, S. (2000). Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. Journal of Biotechnology, 81, 73–84. DOI: 10.1016/S0168-1656(00)00277-7. http://dx.doi.org/10.1016/S0168-1656(00)00277-710.1016/S0168-1656(00)00277-7Search in Google Scholar

[18] L’Homme, C., Puigserver, A., & Biagini, A. (2003). Effect of food-processing on the degradation of fructooligosaccharides in fruit. Food Chemistry, 82, 533–537. DOI:10.1016/S0308-8146(03)00003-7. http://dx.doi.org/10.1016/S0308-8146(03)00003-710.1016/S0308-8146(03)00003-7Search in Google Scholar

[19] Lee, K. J., Choi, J. D., & Lim, J. Y. (1992). Purification and properties of intracellular fructosyl transferase from Aureobasidium pullulans. World Journal of Microbiology & Biotechnology, 8, 411–415. http://dx.doi.org/10.1007/BF0119875610.1007/BF01198756Search in Google Scholar PubMed

[20] Madlová, A., Antošová, M., Baráthová, M., Polakovič, M., Štefuca, V., & Báleš, V. (1999). Screening of microorganisms for transfructosylating activity and optimization of biotransformation of sucrose to fructooligosaccharrides. Chemical Papers, 53, 366–369. Search in Google Scholar

[21] Nguyen, Q. D., Rezessy-Szabo, J. M., Bhat, M. K., & Hoschke, A., (2005). Purification and some properties of [α]-fructofuranosidase from Aspergillus niger IMI303386. Process Biochemistry, 40, 2461–2466. DOI: 10.1016/j.procbio. 2004.09.012. http://dx.doi.org/10.1016/j.procbio.2004.09.01210.1016/j.procbio.2004.09.012Search in Google Scholar

[22] Nizhizawa, K., Nakajima, M., & Nabetani, H. (2001). Kinetic study on transfructosylation by fructofuranosidase from Aspergillus niger ATCC 20611 and availability of a membranereactor for fructooligosaccharide production. Food Science and Technology Research, 7, 39–44. http://dx.doi.org/10.3136/fstr.7.3910.3136/fstr.7.39Search in Google Scholar

[23] Onderková, Z., Polakovič, M., Štefuca, V., Vandákova, M., & Antošová, M. (2006). Selection of carrier for immobilization of fructosyltransferase from Aureobasidium pullulans. Chemical Papers, 60, 469–472. DOI: 10.2478/s11696-006-0085-x. http://dx.doi.org/10.2478/s11696-006-0085-x10.2478/s11696-006-0085-xSearch in Google Scholar

[24] Rivero-Urgell, M., & Santamaria-Orleans, A. (2001). Oligosac-charides: application in infant food. Early Human Development, 65(Supplement 2), 43–52. DOI: 10.1016/S0378-3782(01)00202-X. http://dx.doi.org/10.1016/S0378-3782(01)00202-X10.1016/S0378-3782(01)00202-XSearch in Google Scholar

[25] Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2004). Production of fructo-oligosaccharides by fructosyltransferase from Aspergillus oryzea CFR 202 and Aureobasidium pullulans CFR 77. Process Biochemistry, 39, 755–760. DOI: 10.1016/S0032-9592(03)00186-9. http://dx.doi.org/10.1016/S0032-9592(03)00186-910.1016/S0032-9592(03)00186-9Search in Google Scholar

[26] Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005a). Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends in Food Science & Technology, 16, 442–457. DOI: 10.1016/j.tifs.2005.05.003. http://dx.doi.org/10.1016/j.tifs.2005.05.00310.1016/j.tifs.2005.05.003Search in Google Scholar

[27] Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005b). Maximization of fructooligosaccharide production by two stage continuous process and its scale up. Journal of Food Engineering, 68, 57–64. DOI: 10.1016/j.jfoodeng.2004.05.022. http://dx.doi.org/10.1016/j.jfoodeng.2004.05.02210.1016/j.jfoodeng.2004.05.022Search in Google Scholar

[28] Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005c). Fructooligosaccharide production using fructosyl transferase obtained from recycling culture of Aspergillus oryzae CFR 202. Process Biochemistry, 40, 1085–1088. DOI: 10.1016/j. procbio.2004.03.009. http://dx.doi.org/10.1016/j.procbio.2004.03.00910.1016/j.procbio.2004.03.009Search in Google Scholar

[29] Spiegel, J. E., Rose, R., Karabell, P. Frankos, V. H., & Schmitt, D. F. (1994). Safety and benefits of fructooligosaccharides as food ingredients. Food Technology, 48, 85–89. Search in Google Scholar

[30] Takahashi, Y., & Goto, S. (1994). Continuous separation of fructooligosaccharides using an annular chromatograph. Separation Science and Technology, 29, 1311–1318. DOI: 10.1080/01496399408006942. http://dx.doi.org/10.1080/0149639940800694210.1080/01496399408006942Search in Google Scholar

[31] Tanriseven, A., & Aslan, Y. (2005). Immobilization of Pectinex Ultra SP-L to produce fructooligosaccharides. Enzyme and Microbial Technology, 36, 550–554. DOI: 10.1016/j.enzmictec. 2004.12.001. http://dx.doi.org/10.1016/j.enzmictec.2004.12.00110.1016/j.enzmictec.2004.12.001Search in Google Scholar

[32] Vandáková, M., Platková, Z., Antošová, M., Báleš, V., & Polakovič, M., (2004). Optimization of cultivation conditions for production of fructosyltransferase by Aureobasidium pullulans. Chemical Papers, 58, 15–22. Search in Google Scholar

[33] Vandáková, M., Vaňková, K., Juraščík, M., Annus, J., Minárik, M., & Polakovič, M. (2007). Fructosyltransferase production and isolation in semi-pilot scale. In Proceedings of the 34th International Conference of the Slovak Society of Chemical Engineering, 21–25 May 2007. Tatranské Matliare, Slovakia: Slovak Society of Chemical Engineering. Search in Google Scholar

[34] Vaňková, K., Antošová, M., & Polakovič, M., (2005). Design and economics of industrial production of fructosyltransferase. Chemical Papers, 59, 441–448. Search in Google Scholar

[35] Vente, J. A. (2005). Adsorbent functionality in relation to selectivity and capacity in oligosaccharide separations. PhD. Thesis, University of Twente, the Netherlands. Search in Google Scholar

[36] Yun, J. W. (1996). Fructooligosaccharides-Occurrence, preparation, and application. Enzyme and Microbial Technology, 19, 107–117. DOI: 10.1016/0141-0229(95)00188-3. http://dx.doi.org/10.1016/0141-0229(95)00188-310.1016/0141-0229(95)00188-3Search in Google Scholar

[37] Yun, J. W., Kim, D. H., Kim, B. W., & Song, S. K. (1997). Comparison of sugar compositions between inulo-and fructo-oligosacharides produced by different enzymes forms. Biotechnology Letters, 19, 553–556. DOI: 10.1023/A: 1018393505192. http://dx.doi.org/10.1023/A:101839350519210.1023/A:1018393505192Search in Google Scholar

[38] Yun J. W., Lee, M., G., & Song, S. K., (1994). Batch production of high-content fruto-oligosaccharides from sucrose by the mixed-enzyme system of β-fructofuranosidase and glucose oxidase. Journal of Fermentation and Bio engineering, 77, 159–163. DOI: 10.1016/0922-338X(94)90316-6. http://dx.doi.org/10.1016/0922-338X(94)90316-610.1016/0922-338X(94)90316-6Search in Google Scholar

Published Online: 2008-6-30
Published in Print: 2008-8-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Square-wave adsorptive stripping voltammetric determination of an antihistamine drug astemizole
  2. Flow injection spectrophotometric determination of iron(III) using diphenylamine-4-sulfonic acid sodium salt
  3. Sensitive determination of nitrogenous hydrochloride drugs via their reaction with ammonium molybdate
  4. Effect of different Fe(III) compounds on photosynthetic electron transport in spinach chloroplasts and on iron accumulation in maize plants
  5. Comparison of different technologies for alginate beads production
  6. Design and economics of industrial production of fructooligosaccharides
  7. Preparation of nanocrystalline anatase TiO2 using basic sol-gel method
  8. 3,5-Bis(2-hydroxyphenyl)-1H-1,2,4-triazole based ligands — protonation and metal complex formation
  9. Synthesis, characterization, fluorescence and redox features of new vic-dioxime ligand bearing pyrene and its metal complexes
  10. Synthesis and characterization of diaminomaleonitrile-functionalized polystyrene grafts for application in pervaporation separation
  11. Synthesis and magnetic properties of polymeric complexes containing ruthenium(II)-ruthenium(III) tetracarboxylato units linked by cyanato, thiocyanato, and selenocyanato ligands
  12. Preparation and modification of collagen-based porous scaffold for tissue engineering
  13. Synthesis, crystal structure, and magnetic properties of a cobalt(II) complex with (3,5-dichloropyridin-4-yl)(pyridin-4-yl)methanol
  14. Synthesis and reactions of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine
  15. Alkalimetric determination of hydrophobic pharmaceuticals using stabilized o/w emulsions
  16. Extraction and analysis of ellagic acid from novel complex sources
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-008-0034-y/pdf?lang=en
Scroll to top button