Startseite Ryabchikovite, CuMg(Si2O6), a new pyroxene group mineral, and some genetic features of natural anhydrous copper silicates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ryabchikovite, CuMg(Si2O6), a new pyroxene group mineral, and some genetic features of natural anhydrous copper silicates

  • Nadezhda V. Shchipalkina , Oleg S. Vereshchagin ORCID logo , Igor V. Pekov , Dmitry I. Belakovskiy , Natalia N. Koshlyakova , Vladimir V. Shilovskikh , Dmitriy V. Pankin , Sergey N. Britvin , Fedor D. Sandalov und Evgeny G. Sidorov
Veröffentlicht/Copyright: 10. Juli 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Ryabchikovite, ideally CuMg(Si2O6), a new pyroxene-group mineral (IMA No. 2021-011) was discovered in exhalations of the active Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. The associated minerals are diopside, hematite, cuprospinel, fluorophlogopite, anhydrite, johillerite, tilasite, and aphthitalite-group sulfates. Ryabchikovite forms thin (up to 25 μm), light brown to reddish-brown epitactic crusts on short-prismatic brownish-gray crystals of diopside (up to 0.5 mm). The new mineral is optically biaxial (+), α = 1.685(5), β = 1.690(5), γ = 1.703(4), and 2V (meas) = 60(15)°. The average chemical composition (wt%, electron microprobe data) is: MgO 18.05, CaO 0.77, CuO 26.46, ZnO 2.23, Al2O3 0.93, Fe2O3 1.89, SiO2 50.10, total 100.43. The empirical formula calculated based on 6 O atoms per formulas unit is M g 1.05 C u 0.78 Z n 0.06 F e 0.06 3 + C a 0.03 S i 1.96 A l 0.04 O 6 Electron backscattered diffraction and powder X-ray difraction show that ryabchikovite is a Cu,Mg-ordered analog of clinoenstatite. Ryabchikovite adopts the space group P21/с and has the following unit-cell parameters: a = 9.731(9), b = 8.929(8), c = 5.221(4) Å, β = 110.00(6)°, V = 426.3(7) Å3, and Z = 4. Ryabchikovite is named in honor of the outstanding Russian geochemist and petrologist Igor Dmitrievich Ryabchikov (1937–2017). Our studies reveal that copper analogs of rock-forming minerals could be found in fumarolic systems. Their crystallization does not require high temperatures or/and pressures (below 500 °C/Pa).


† Deceased 20 March 2021


Funding statement: This work was supported by the Russian Science Foundation, grant no. 1917-00050. The authors thank the Resource Center of X-ray diffraction studies and Geomodel Resource Centre of Saint-Petersburg State University for providing instrumental and computational resources. Raman measurements were partly performed at SPbSU Research park Center for optical and laser materials research with financial support from St. Petersburg State University (project no. 93021679).

Acknowledgments

We are grateful to Mario Tribaudino, Frank C. Hawthorne, and an anonymous reviewer for valuable comments and suggestions for improving the paper, and Fabrizio Nestola for his editorial work.

References Cited

Audétat, A., Zhang, L., and Ni, H. (2018) Copper and Li diffusion in plagioclase, pyroxenes, olivine and apatite, and consequences for the composition of melt inclusions. Geochimica et Cosmochimica Acta, 243, 99–115, https://doi.org/10.1016/j.gca.2018.09.016Suche in Google Scholar

Balassone, G., Petti, C., Mondillo, N., Panikorovskii, T.L., Gennao, R., Capelletti, P., Altomare, A., Corriero, N., Cangiano, M., and D’Orazio, L. (2019) Copper minerals at Vesuvius volcano (Southern Italy): A mineralogical review. Minerals, 9, Paper 730.Suche in Google Scholar

Bernhardt, H.J., Armbruster, T., Fransolet, A.M., and Schreyer, W. (2005) Stavelotite-(La), a new lanthanum-manganese-sorosilicate mineral from the Stavelot Massif, Belgium. European Journal of Mineralogy, 17, 703–714, https://doi.org/10.1127/0935-1221/2005/0017-0703Suche in Google Scholar

Borchert, W. and Krämer, V. (1969) Ein synthetisches Magnesium-Kupfer-Silikat mit Klinopyroxenstruktur, (Mg,Cu)2(Si2O6) Neues Jahrbuch für Mineralogie Abhandlungen, 6–14.Suche in Google Scholar

Breuer, K.-H., Eysel, W., and Behruzi, M. (1986) Copper(II) silicates and germanates with chain structures. II. Crystal chemistry. Zeitschrift für Kristallographie. Crystalline Materials, 176, 219–232, https://doi.org/10.1524/zkri.1986.176.3-4.219Suche in Google Scholar

Britvin, S.N., Dolivo-Dobrovolsky, D.V., and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski RMO, 146, 104–107 (in Russian).Suche in Google Scholar

Cameron, M. and Papike, J.J. (1981) Structural and chemical variations in pyroxenes. American Mineralogist, 66, 1–50.Suche in Google Scholar

Chukanov, N.V., Zubkova, N.V., Jancev, S., Pekov, I.V., Ermolaeva, V.N., Varlamov, D.A., Belakovskiy, D., and Britvin, S.N. (2020) Zinc-rich and copper-bearing amphiboles from sulphide-free ore occurences of the Pelagonian Massif, Republic of North Macedonia. Mineralogy and Petrology, 114, 129–140, https://doi.org/10.1007/s00710-020-00694-zSuche in Google Scholar

Core, D.P., Kesler, S.E., Essene, E.J., Dufresne, E.B., Clarke, R., Arms, D.A., Walko, D., and Rivers, M. (2005) Copper and zinc in silicate and oxide minerals in igneous rocks from the Bingham–Park City Belt, Utah: Synchrotron X-ray fluorescence data. Canadian Mineralogist, 43, 1781–1796, https://doi.org/10.2113/gscanmin.43.5.1781Suche in Google Scholar

Ding, L., Darie, C., Colin, C.V., and Bordet, P. (2016) Cu0.8Mg1.2Si2O6 A copper-bearing silicate with the low-clinopyroxene structure. Mineralogical Magazine, 80, 325–335, https://doi.org/10.1180/minmag.2016.080.002Suche in Google Scholar

Eltohamy, M.R., Ali, A.F., Leonelli, C., and Hamzawy, E.M.A. (2021) Synthesis of Cu-containing diopside through a one-step crystallization. Egyptian Journal of Chemistry, 64, 6673–6679, https://doi.org/10.21608/ejchem.2021.22902.2364Suche in Google Scholar

Getahun, A., Reed, M.H., and Symonds, R. (1996) Mount St. Augustine volcano fumarole wall rock alteration: Mineralogy, zoning, composition and numerical models of its formation process. Journal of Volcanology and Geothermal Research, 71, 73–107, https://doi.org/10.1016/0377-0273(95)00071-2Suche in Google Scholar

Ghose, S. and Wan, C. (1976) Site preference of Cu2+-ions in enstatite and the refinement of the crystal structure of a pure enstatite. Eos, 57, 337.Suche in Google Scholar

Ghose, S., Choudhury, N., Chaplot, S.I., Pal Chowdhury, C., and Sharma, S.K. (1994) Lattice dynamics and Raman spectroscopy of protoenstatite Mg2Si2O6. Physics and Chemistry of Minerals, 20, 469–477.Suche in Google Scholar

Giester, G. and Rieck, B. (1994) Effenbergite, BaCu[Si4O10],a new mineral from the Kalahari Manganese field, South Africa: Description and crystal structure. Mineralogical Magazine, 58, 663–670, https://doi.org/10.1180/minmag.1994.058.393.17Suche in Google Scholar

Giester, G. and Rieck, B. (1996) Wesselsite, SrCu[Si4O10],a further new gillespite-group mineral from the Kalahari Manganese Field, South Africa. Mineralogical Magazine, 60, 795–798, https://doi.org/10.1180/minmag.1996.060.402.09Suche in Google Scholar

Hentschel, G. (1993) Die Lavaströme der Graulai: Eine neue Fundstelle in der Westeifel. Lapis, 12, 11–23 (in German) (as Unnamed (Ba-Cu Silicate) identical with synthetic BaCu2Si2O7)Suche in Google Scholar

Hříchová, R. (1970) Contributions to the synthesis of spessartine analogues. Mineralogical Magazine, 37, 593–597, https://doi.org/10.1180/minmag.1970.037.289.09Suche in Google Scholar

Hsu, Y.J., Zajacz, Z., Ulmer, P., and Heinrich, C.A. (2017) Copper partitioning between silicate melts and amphibole: Experimental insight into magma evolution leading to porphyry copper ore formation. Chemical Geology, 448, 151–163, https://doi.org/10.1016/j.chemgeo.2016.11.019Suche in Google Scholar

Huang, E., Chen, C.H., Huang, T., Lin, E.H., and Xu, J. (2000) Raman spectroscopic characteristics of Mg-Fe-Ca pyroxenes. American Mineralogist, 85, 473–479.Suche in Google Scholar

Le Roux, V., Dasgupta, R., and Lee, C.T. (2015) Recommended mineral-melt partition coefficients for FRTEs (Cu), Ga and Ge during mantle melting. American Mineralogist, 100, 2533–2544, https://doi.org/10.2138/am-2015-5215Suche in Google Scholar

Liu, X., Xiong, X., Audétat, A., Li, Y., Song, M., Li, L., Sun, W., and Ding, X. (2014) Partitioning of copper between olivine, orthopyroxene, clinopyroxene, spinel, garnet and silicate melts at upper mantle conditions. Geochimica et Cosmochimica Acta, 125, 1–22, https://doi.org/10.1016/j.gca.2013.09.039Suche in Google Scholar

Majumdar, A.S., King, H.E., John, T., Kusebauch, C., and Putnis, A. (2014) Pseudomorphic replacement of diopside during interaction with (Ni,Mg)Cl2 aqueous solutions: Implications for the Ni-enrichment mechanism in talc- and serpentinite-type phases. Chemical Geology, 380, 27–40, https://doi.org/10.1016/j.chemgeo.2014.04.016Suche in Google Scholar

Mazzi, F. and Pabst, A. (1962) Reexamination of cuprorivaite. American Mineralogist, 47, 409–410.Suche in Google Scholar

Minguzzi, C. (1938) Cuprorivaite: Un nuovo minerale. Periodico di Mineralogia, 333–345.Suche in Google Scholar

Morimoto, N. (1989) Nomenclature of pyroxenes. Mineralogical Journal of Japan, 14, 198–221, https://doi.org/10.2465/minerj.14.198Suche in Google Scholar

Naboko, S.I. and Glavatskikh, S.F. (1992) Relikty posteruptivnoy aktivnosty na starykh konusakh Tolbachinskogo dola, Kamchatka. Vulkanology and Seismology, 5–6, 66–86 (in Russian).Suche in Google Scholar

Ohashi, Y. and Sekita, M. (1982) Raman spectroscopic study of the Si-O-Si stretching vibration in clinopyroxenes. Journal of the Japanese Association of Mineralogists, Petrologists, and Economic Geologists, 77, 455–459, https://doi.org/10.2465/ganko1941.77.455Suche in Google Scholar

Ohashi, Y. and Sekita, M. (1983) Raman spectroscopic study of clinopyroxenes in the join CaScAlSiO6-CaTiAl2O6. Journal of the Japanese Association of Mineralogists, Petrologists, and Economic Geologists, 78, 239–245.Suche in Google Scholar

Panikorovskii, T.L., Shilovskikh, V.V., Avdontseva, E.Y., Zolotarev, A.A., Pekov, I.V., Britvin, S.N., Halenius, U., and Krivovichev, S.V. (2017) Cyprine, Ca19Cu2+(Al, Mg, Mn)12Si18O69(OH)9,a new vesuvianite-group mineral from the Wessels mine, South Africa. European Journal of Mineralogy, 29, 295–306, https://doi.org/10.1127/ejm/2017/0029-2592Suche in Google Scholar

Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G., and Pushcharovsky, D.Yu. (2014) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. II. Ericlaxmanite and kozyrevskite, two natural modifications of Cu4O(AsO4)2. Mineralogical Magazine, 78, 1553–1569, https://doi.org/10.1180/minmag.2014.078.7.03Suche in Google Scholar

Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G., and Sidorov, E.G. (2018a) Fumarolic arsenates—A special type of arsenic mineralization. European Journal of Mineralogy, 30, 305–322, https://doi.org/10.1127/ejm/2018/0030-2718Suche in Google Scholar

Pekov, I.V., Zubkova, N.V., and Pushcharovsky, D.Yu. (2018b) Copper minerals from volcanic exhalations—a unique family of natural compounds: Crystal chemical review. Acta Crystallographica. Section B, Structural Science, Crystal Engineering and Materials, 74, 502–518, https://doi.org/10.1107/S2052520618014403Suche in Google Scholar

Pekov, I.V., Agakhanov, A.A., Zubkova, N.V., Koshlyakova, N.N., Shchipalkina, N.V., Sandalov, F.D., Yapaskurt, V.O., Turchkova, A.G., and Sidorov, E.G. (2020) Oxidizing-type fumaroles of the Tolbachik volcano, a mineralogical and geochemical unique. Russian Geology and Geophysics, 61, 675–688, https://doi.org/10.15372/RGG2019167Suche in Google Scholar

Portnyagin, M.V., Mironov, N.L., and Nazarova, D.P. (2017) Copper partitioning between olivine and melt inclusions and its content in primitive island-arc magmas of Kamchatka. Petrology, 25, 419–432, https://doi.org/10.1134/S086959111704004XSuche in Google Scholar

Pozas, J.M.M., Rossi, G., and Tazzoli, V. (1975) Re-examination and crystal structure analysis of litidionite. American Mineralogist, 60, 471–474.Suche in Google Scholar

Prencipe, M., Mantovani, L., Tribaudino, M., Bersani, D., and Lottici, P.P. (2012) The Raman spectrum of diopside: A comparison between ab initio calculated and experimentally measured frequencies. European Journal of Mineralogy, 24, 457–464, https://doi.org/10.1127/0935-1221/2012/0024-2178Suche in Google Scholar

Prewitt, C.T., Ed. (1980) Pyroxenes, 525 p. Reviews in Mineralogy, Vol. 7, Mineralogical Society of America, Chantilly, Virginia.Suche in Google Scholar

Rieck, B., Pristacz, H., and Giester, G. (2015) Colinowensite, BaCuSi2O6,a new mineral from the Kalahari Manganese Field, South Africa and new data on wesselsite, SrCuSi4O10. Mineralogical Magazine, 79, 1769–1778, https://doi.org/10.1180/minmag.2015.079.7.04Suche in Google Scholar

Rudnick, R.L. and Gao, S. (2003) Composition of the continental crust, p. 1–64. Treatise on Geochemistry, Elsevier.Suche in Google Scholar

Sekita, M., Ohashi, H., and Terada, S. (1988) Raman spectroscopic study of clinopyroxenes in the system CaScAlSiO6-CaAl2SiO6. Physics and Chemistry of Minerals, 15, 319–322, https://doi.org/10.1007/BF00311035Suche in Google Scholar

Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767, https://doi.org/10.1107/S0567739476001551Suche in Google Scholar

Shchipalkina, N.V., Pekov, I.V., Koshlyakova, N.N., Britvin, S.N., Zubkova, N.V., Varlamov, D.A., and Sidorov, E.G. (2020) Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia–Part 1: Neso-, cyclo-, ino- and phyllosilicates. European Journal of Mineralogy, 32, 101–119, https://doi.org/10.5194/ejm-32-101-2020Suche in Google Scholar

Siidra, O.I., Vladimirova, V.A., Tsirlin, A.A., Chukanov, N.V., and Ugolkov, V.L. (2020) Cu9O2(VO4)4Cl2,the first copper oxychloride vanadate: Mineralogically inspired synthesis and magnetic behavior. Inorganic Chemistry, 59, 2136–2143, https://doi.org/10.1021/acs.inorgchem.9b02565Suche in Google Scholar

Symonds, R.B., Rose, W.I., Reed, M.H., Lichte, F.E., and Finnegan, D.L. (1987) Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gases at Merapi Volcano, Indonesia. Geochimica et Cosmochimica Acta, 51, 2083–2101, https://doi.org/10.1016/0016-7037(87)90258-4Suche in Google Scholar

Tachi, T., Horiuchi, H., and Nagasawa, H. (1997) Structure of Cu-bearing orthopyroxene, Mg(Cu0.56Mg0.44)Si2O6 and behavior of Cu2+ in the orthopyroxene structure. Physics and Chemistry of Minerals, 24, 463–476, https://doi.org/10.1007/s002690050061Suche in Google Scholar

Tessalina, S.G., Yudovskaya, M.A., Chaplygin, I.V., Birck, J.L., and Capmas, F. (2008) Sources of unique rhenium enrichment in fumaroles and sulphides at Kudryavy volcano. Geochimica et Cosmochimica Acta, 72, 889–909, https://doi.org/10.1016/j.gca.2007.11.015Suche in Google Scholar

Tribaudino, M., Mantovani, L., Bersani, D., and Lottici, P.P. (2012) Raman spectroscopy of (Ca,Mg)MgSi2O6 clinopyroxenes. American Mineralogist, 97, 1339–1347, https://doi.org/10.2138/am.2012.4057Suche in Google Scholar

Tribaudino, M., Stangarone, C., Gori, C., Mantovani, L., Bersani, D., and Lottici, P.P. (2019) Experimental and calculated Raman spectra in Ca-Zn pyroxenes and a comparison between (CaxM21+ –x)M2+Si2O6 pyroxenes (M2+ = Mg, Co, Zn, Fe2+). Physics and Chemistry of Minerals, 46, 827–837, https://doi.org/10.1007/s00269-019-01043-zSuche in Google Scholar

Varlamov, D.A., Ermolaeva, V.N., Chukanov, N.V., and Jancev, S. (2021) Mineralogy of copper in nonsilfide endogeneous Pb-Zn-Sb ores of the Pelagonian Massif, Republic of North Macedonia. Zapiski RMO, 4, 103–114 (in Russian).Suche in Google Scholar

Vereshchagin, O.S., Rozhdestvenskaya, I.V., Frank-Kamenetskaya, O.V., Zolotarev, A.A., and Mashkovtsev, R.I. (2013) Crystal chemistry of Cu-bearing tourmalines. American Mineralogist, 98, 1610–1616, https://doi.org/10.2138/am.2013.4408Suche in Google Scholar

Wang, A., Jolliff, B.L., Haskin, L.A., Kuebler, K.E., and Viskupic, K.M. (2001) Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy. American Mineralogist, 86, 790–806, https://doi.org/10.2138/am-2001-0703Suche in Google Scholar

Wang, G., Yang, H., Liu, Y., Tong, L., and Auwalu, A. (2019) The alteration mechanism of copper-bearing biotite and leachable property of copper-bearing minerals in Mulyashy Copper Mine, Zambia. Scientific Reports, 9, Paper 15040.Suche in Google Scholar

White, W.B. (1975) Structural interpretation of lunar and terrestrial minerals by Raman spectroscopy. In C. Karr Jr., Ed., Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals, 325–358. Academic Press.Suche in Google Scholar

Yang, H., Downs, R.T., Evans, S.H., and Pinch, W.W. (2013) Scottyite, the natural analog of synthetic BaCu2Si2O7,a new mineral from the Wessels mine, Kalahari Manganese Fields, South Africa. American Mineralogist, 98, 478–484, https://doi.org/10.2138/am.2013.4326Suche in Google Scholar

Zabdyr, L.A. and Fabrichnaya, O.B. (2004) Phase equilibria in the Co-Cu-O-Si system. Calphad, 28, 293–298.Suche in Google Scholar

Zöller, M.H., Tillmanns, E., and Hentschel, G. (1992) Liebauite, Ca3Cu5Si9O26,a new silicate mineral with 14er single chain. Zeitschrift für Kristallographie, 200, 115–126, https://doi.org/10.1524/zkri.1992.200.1-2.115Suche in Google Scholar

Received: 2022-06-01
Accepted: 2022-08-18
Published Online: 2023-07-10
Published in Print: 2023-07-26

© 2023 by Mineralogical Society of America

Artikel in diesem Heft

  1. On the origin of fluorine-poor apatite in chondrite parent bodies
  2. Fluorine behavior during experimental muscovite dehydration melting and natural partitioning between micas: Implications for the petrogenesis of peraluminous leucogranites and pegmatites
  3. Telescoped boiling and cooling mechanisms triggered hydrothermal stibnite precipitation: Insights from the world’s largest antimony deposit in Xikuangshan China
  4. MSA Distinguished Lecturer Series Correlations between cathodoluminescence intensity and aluminum concentration in low-temperature hydrothermal quartz
  5. Behavior of hydrogen defect and framework of Fe-bearing wadsleyite and ringwoodite at high temperature and high pressure
  6. What is mineral informatics?
  7. Metal source and hydrothermal evolution of the Jiaoxi quartz vein-type tungsten deposit (Tibet): Insights from textural and compositional variations of wolframite and scheelite
  8. Geochemical processes and mechanisms for cesium enrichment in a hot-spring system
  9. Identifying xenocrystic tourmaline in Himalayan leucogranites
  10. Contrasting alteration textures and geochemistry of allanite from uranium-fertile and barren granites: Insights into granite-related U and ion-adsorption REE mineralization
  11. Feiite: Synthesis, stability, and implications for its formation conditions in nature
  12. Thermal equation of state of Fe3O4 magnetite up to 16 GPa and 1100 K
  13. UHP eclogite from western Dabie records evidence of polycyclic burial during continental subduction
  14. CO2 quantification in silicate glasses using μ-ATR FTIR spectroscopy
  15. Local structure determination of Zn-smectite
  16. A new UHP unit in the Western Alps: First occurrence of coesite from the Monviso Massif (Italy)
  17. Mineral evolution and mineral niches of ammonium sulfates: The case of Pastora mine, Aliseda, Spain
  18. Discrete late Jurassic Sn mineralizing events in the Xianghualing Ore District, South China: Constraints from cassiterite and garnet U-Pb geochronology
  19. Ryabchikovite, CuMg(Si2O6), a new pyroxene group mineral, and some genetic features of natural anhydrous copper silicates
Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2022-8620/html?lang=de
Button zum nach oben scrollen