Startseite Mineral evolution and mineral niches of ammonium sulfates: The case of Pastora mine, Aliseda, Spain
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mineral evolution and mineral niches of ammonium sulfates: The case of Pastora mine, Aliseda, Spain

  • Ángel Crespo López , Carlos Pimentel und Carlos M. Pina
Veröffentlicht/Copyright: 10. Juli 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The uncommon association of ammonium sulfates identified in the Pastora abandoned mine is the result of a complex mineral evolution. By means of dissolution-(re)crystallization reactions operating during long periods of time, ammonium minerals “adapt” to local spatiotemporal changes in physico-chemical conditions. We found that during such an evolution, seasonal variations in temperature and humidity, the relative solubility of mineral species, and the presence of organic matter play an important role. In addition, our study shows the existence of “mineral niches” and “mineral seasonality,” which can be explained on the basis of the “mineral ecology” concept introduced by Hazen et al. (2015). Our investigation of the formation of hydrated sulfates, particularly of ammonium sulfates, might be of importance for identifying the existence of life in mineral formation environments.


† Present address: Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000 Grenoble, France.


Funding statement: C. Pimentel acknowledges a Juan de la Cierva-Formación postdoctoral contract (ref. FJC2018-035820-I) from the Spanish Ministry of Science.

References Cited

Abdeen, A.M., Will, G., Schafer, W., Kirfel, A., Bargouth, M.O., Recker, K., and Weiss, A. (1981) X-ray and neutron diffraction study of alums II. The crystal structure of methylammonium aluminium alum III. Zeitschrift für Kristallographie, 157, 147–166.Suche in Google Scholar

Audra, P. and Hoble’a, F. (2007) The first cave occurrence of jurbanite [Al(OH SO4) 5H2O], associated with alunogen [Al2(SO4)3 17H2O] and tschermigite [NH4Al(SO4)2 12H2O]: thermal-sulfidic Serpents Cave, France. Journal of Caves and Karst Studies, 69, 243–249.Suche in Google Scholar

Basciano, L.C. (2008) Crystal chemistry of the jarosite group of minerals. Solid-solution and atomic structures. Ph.D. thesis, Queen’s University, Kingston, Ontario, Canada.Suche in Google Scholar

Basciano, L.C. and Peterson, R.C. (2007) The crystal structure of ammoniojarosite, (NH4)Fe3(SO4)2(OH)6 and the crystal chemistry of the ammoniojarosite hydronium jarosite solid-solution series. Mineralogical Magazine, 71, 427–441, https://doi.org/10.1180/minmag.2007.071.4.427Suche in Google Scholar

Crespo, Á. (2015) La mina Pastora, Aliseda (Cáceres) como exponente del patrimonio geológico-minero de Extremadura. Trabajo Fin de Máster, Facultad de Geología, Universidad Complutense de Madrid.Suche in Google Scholar

Crespo, Á., Pimentel, C., Pedraz, P., and Pina, C. (2017a) Caracterización y origen del sulfato eslavikita de la Mina Pastora, Aliseda (Cáceres). Revista de la Sociedad Española de Mineralogía (Macla), 22, 31–32 (in Spanish).Suche in Google Scholar

Crespo López, Á., Pimentel, C., Pedraz, P., and Pina, C. (2017b) First occurrence of the rare mineral slavíkite in Spain. Journal of Iberian Geology, 43, 487–495, https://doi.org/10.1007/s41513-017-0030-6Suche in Google Scholar

Dold, B. (1999) Mineralogical and geochemical changes of copper flotation tailings in relation to their original composition and climatic setting—implications for acid mine drainage and element mobility. Thesis, Université de Genève.Suche in Google Scholar

Dutrizac, J. E. and Jambor, J.L. (2000) Jarosites and their application in hydro-metallurgy. In C.N. Alpers, J.L. Jambor, and D.K. Nordstrom, Eds., Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance. Reviews in Mineralogy and Geochemistry, 40, 405–452.Suche in Google Scholar

Frost, R.L., Wills, R.A., Kloprogge, J.T., and Martens, W. (2006) Thermal decomposition of ammoniumjarosite (NH4)Fe3(SO4)2(OH)6. Journal of Thermal Analysis and Calorimetry, 84, 489–496, https://doi.org/10.1007/s10973-005-6953-8Suche in Google Scholar

Glynn, P. (2000) Solid-solution solubilities and thermodynamics: Sulphates, carbonates, and halides. Reviews in Mineralogy and Geochemistry, 40, 481–511, http://dx.doi.org/10.2138/rmg.2000.40.10Suche in Google Scholar

Godeas, M. and Litvak, V. (2006) Identificación de anomalías de amonio por espectrometría de reflectancia: implicancias para la exploración minera, 438–443. Asociación Geológica Argentina.Suche in Google Scholar

Grigor’ev, D.P. (1965) Crystal Formation: Ontogeny of Minerals. Translated from the Russian edition, 1961, by Israel Program for Scientific Translation. Y. Brenner, Ed., Davey, New York, 256 pp.Suche in Google Scholar

Hammarstrom, J.M., Seal, R.R. II, Meier, A.L., and Kornfeld, J.M. (2005) Secondary sulphate minerals associated with acid drainage in the eastern US: Recycling of metals and acidity in surficial environments. Chemical Geology, 215, 407–431, https://doi.org/10.1016/j.chemgeo.2004.06.053Suche in Google Scholar

Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.J., Sverjensky, D.A., and Yang, H. (2008) Mineral evolution. American Mineralogist, 93, 1693–1720, https://doi.org/10.2138/am.2008.2955Suche in Google Scholar

Hazen, R.M., Grew, E.S., Downs, R.T., Golden, J., and Hystad, G. (2015) Mineral ecology: Chance and necessity in the mineral diversity of terrestrial planets. Canadian Mineralogist, 53, 295–324, https://doi.org/10.3749/canmin.1400086Suche in Google Scholar

Hubbard, C.R. and Snyder, R.L. (1988) RIR-measurement and use in quantitative XRD. Powder Diffraction, 3, 74–77, https://doi.org/10.1017/S0885715600013257Suche in Google Scholar

I.G.M.E. Instituto Geológico y Minero de España (2020) Geological map number 703 (Arroyo de la Luz). MAGNA.Suche in Google Scholar

Julivert, M., Fontboté, J.M., Ribeiro, A., and Nabais-Conde, L.E. (1972) Mapa Tectónico de la Península Ibérica y Baleares 1:1.000.000. Instituto Geológico y Minero de España (IGME).Suche in Google Scholar

Kampf, A.R., Richards, R.P., Nash, B.P., Murowchick, J.B., and Rakovan, J.F. (2016) Carlsonite, (NH4)5Fe33+O(SO4)6·7H2O, and huizingite-(Al), (NH4)9Al3(SO4)8(OH)2·4H2O, two new minerals from a natural fire in an oil-bearing shale near Milan, Ohio. American Mineralogist, 101, 2095–2107, https://doi.org/10.2138/am-2016-5680Suche in Google Scholar

Klingelhöfer, G., Morris, R.V., Bernhardt, B., Schröder, C., Rodionov, D.S., de Souza, P.A. Jr., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B., and others. (2004) Jarosite and hematite at Meridiani Planum from Opportunity’s Mossbauer Spectrometer. Science, 306, 1740–1745, https://doi.org/10.1126/science.1104653Suche in Google Scholar

Loan, D.K., Con, T.H., Hong, T.T., and Ly, L.T.M. (2013) Quick determination of ammonia ions in water environment based on thymol color creating reaction. Environmental Sciences (Ruse), 1, 83–92, https://doi.org/10.12988/es.2013.31010Suche in Google Scholar

Madden, M.E., Bodnar, R.J., and Rimstidt, J.D. (2004) Jarosite as an indicator of water-limited chemical weathering on Mars. Nature, 431, 821–823, https://doi.org/10.1038/nature02971Suche in Google Scholar

Martín, J.D. (2008) Programa para el análisis por difracción de rayos X. Métodos de polvo (in Spanish).Suche in Google Scholar

Masalehdani, M.N.N., Mees, F., Dubois, M., Coquinot, Y., Potdevin, J.L., Fialin, M., and Blanc-Valleron, M.M. (2009) Condensate minerals from a burning coal-waste heap in Avion, Northern France. Canadian Mineralogist, 47, 573–591, https://doi.org/10.3749/canmin.47.3.573Suche in Google Scholar

Mitchell, R.E. (2002) Mechanisms of Pyrite Oxidation to Nonslagging Species. Final Report DE-FG22-94PC94205, Stanford University, California, U.S.A., https://www.osti.gov/scitech/servlets/purl/812007Suche in Google Scholar

Olías Álvarez, M., Nieto Liñán, J.M., and Sarmiento, A.M. (2008) La contaminación minera de los ríos Tinto y Odiel. In M. Olías Álvarez et al., Eds., Geología de Huelva: lugares de interés geológico. 2nd ed. Universidad de Huelva, p. 62–67.Suche in Google Scholar

Olyphant, G.A., Bayless, G.R., and Harper, D. (1991) Seasonal and weather-related controls on solute concentrations and acid drainage from a pyritic coal-refuse deposit in southwestern Indiana, USA. Journal of Contaminant Hydrology, 7, 219–236, https://doi.org/10.1016/0169-7722(91)90029-ZSuche in Google Scholar

Parafiniuk, J. and Kruszewski, Ł. (2009) Ammonium minerals from burning coal-dumps of the Upper Silesian Coal Basin (Poland). Geological Quarterly, 53, 341–356.Suche in Google Scholar

Přikryl, R., Melounová, L., Vařilová, Z., and Weishauptová, Z. (2007) Spatial relationships of salt distribution and related physical changes of underlying rocks on naturally weathered sandstone exposures (Bohemian Switzerland National Park, Czech Republic). Environmental Geology (Berlin), 52, 409–420, https://doi.org/10.1007/s00254-006-0589-2Suche in Google Scholar

Shimobayashi, N., Ohnishi, M., and Miura, H. (2011) Ammonium sulphate minerals from Mikasa, Hokkaido, Japan: Boussingaultite, godovikovite, efremovite and tschermigite. Journal of Mineralogical and Petrological Sciences, 106, 158–163, https://doi.org/10.2465/jmps.101021fSuche in Google Scholar

Soldevila i Bartolí, J. (1991) “Estudio geológico-estructural de los materiales precámbricos y paleozoicos entre la Sierra de San Pedro y la Depresión del Guadiana (provincias de Cáceres y Badajoz). Sector límite entre las zonas Centroibérica y Ossa-Morena”. Thesis Doctoral, Universidad Autónoma de Barcelona, 262 pp.Suche in Google Scholar

Soldevila i Bartolí, J. (1992) La sucesión paleozoica en el Sinforme de la Sierra de San Pedro (provincias de Cáceres y Badajoz, SO de España). Estudios geológicos, 48, 363–379.Suche in Google Scholar

Solorzano, L. (1969) Determination of ammonia in natural waters by the phenol-hypochlorite method. Limnology and Oceanography, 14, 799–801.Suche in Google Scholar

Spratt, H.J. (2015) Structural effects of ammonium and hydronium in jarosite minerals. Ph.D. School of Chemistry, Physics and Mechanical Engineering. Queensland University of Technology.Suche in Google Scholar

Warr, L.N. (2021) IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291–320, https://doi.org/10.1180/mgm.2021.43Suche in Google Scholar

Yushkin, N.P. (1982) Evolutionary ideas in modern mineralogy. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 111(4), 432–442 (in Russian).Suche in Google Scholar

Received: 2022-02-08
Accepted: 2022-08-12
Published Online: 2023-07-10
Published in Print: 2023-07-26

© 2023 by Mineralogical Society of America

Artikel in diesem Heft

  1. On the origin of fluorine-poor apatite in chondrite parent bodies
  2. Fluorine behavior during experimental muscovite dehydration melting and natural partitioning between micas: Implications for the petrogenesis of peraluminous leucogranites and pegmatites
  3. Telescoped boiling and cooling mechanisms triggered hydrothermal stibnite precipitation: Insights from the world’s largest antimony deposit in Xikuangshan China
  4. MSA Distinguished Lecturer Series Correlations between cathodoluminescence intensity and aluminum concentration in low-temperature hydrothermal quartz
  5. Behavior of hydrogen defect and framework of Fe-bearing wadsleyite and ringwoodite at high temperature and high pressure
  6. What is mineral informatics?
  7. Metal source and hydrothermal evolution of the Jiaoxi quartz vein-type tungsten deposit (Tibet): Insights from textural and compositional variations of wolframite and scheelite
  8. Geochemical processes and mechanisms for cesium enrichment in a hot-spring system
  9. Identifying xenocrystic tourmaline in Himalayan leucogranites
  10. Contrasting alteration textures and geochemistry of allanite from uranium-fertile and barren granites: Insights into granite-related U and ion-adsorption REE mineralization
  11. Feiite: Synthesis, stability, and implications for its formation conditions in nature
  12. Thermal equation of state of Fe3O4 magnetite up to 16 GPa and 1100 K
  13. UHP eclogite from western Dabie records evidence of polycyclic burial during continental subduction
  14. CO2 quantification in silicate glasses using μ-ATR FTIR spectroscopy
  15. Local structure determination of Zn-smectite
  16. A new UHP unit in the Western Alps: First occurrence of coesite from the Monviso Massif (Italy)
  17. Mineral evolution and mineral niches of ammonium sulfates: The case of Pastora mine, Aliseda, Spain
  18. Discrete late Jurassic Sn mineralizing events in the Xianghualing Ore District, South China: Constraints from cassiterite and garnet U-Pb geochronology
  19. Ryabchikovite, CuMg(Si2O6), a new pyroxene group mineral, and some genetic features of natural anhydrous copper silicates
Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2022-8488/html
Button zum nach oben scrollen