Abstract
We identified dmisteinbergite, the rare trigonal polymorph of CaAl2Si2O8, for the first time in high-grade metamorphic rocks. Dmisteinbergite occurs as a crystallization product of silicate melt inclusions (nanogranitoids) in garnet from three host rocks with different protoliths and re-equilibration conditions, i.e., from 1.0 to 4.5 GPa. Raman spectra and compositions of the dmisteinbergite here investigated are overall identical to those of previously characterized artificial and natural dmisteinbergite. In nanogranitoids, this phase coexists with other metastable polymorphs of feldspar (kumdykolite, kokchetavite) and SiO2 (quartz, cristobalite), recently interpreted as the result of undercooling, supersaturation and rapid crystallization of a silicate melt confined in a micrometric pore. Dmisteinbergite formation likely results from a similar process, and thus it should be regarded as a kinetically controlled phase. Moreover, the investigation of dmisteinbergite as well as of other metastable feldspar polymorphs offers new insights into the behavior of natural materials under non-equilibrium conditions.
Acknowledgments and Funding
The authors are grateful to C. Günter for assistance during analyses and to C. Fischer for sample preparation. We are thankful to S. Mittempergher and an anonymous reviewer for their thoughtful comments. This research was funded by the German Federal Ministry for Education and Research and by the Deutsche Forschungsgemeinschaft (Project FE 1527/2-3 and FE 1527/4-1 to S.F).
References cited
Abe, T., and Sunagawa, I. (1995) Hexagonal CaAl2Si2O8 in a high T solution; metastable crystallization and transformation to anorthite. Mineralogical Journal, 17, 257–281.10.2465/minerj.17.257Suche in Google Scholar
Abe, T., Sukamoto, K., and Sunagawa, I. (1991) Nucleation, growth and stability of CaAl2Si2O8 polymorphs. Physics and Chemistry of Minerals, 17, 473–484.10.1007/BF00202227Suche in Google Scholar
Borghini, A. (2019) Melt inclusions in mafic rocks as witnesses of metasomatism in the Bohemian Massif. Ph.D. thesis, Universität Potsdam, 125 pp.Suche in Google Scholar
Borghini, A., Ferrero, S., Wunder, B., Laurent, O., O’Brien, P.J., and Ziemann, M.A. (2018) Granitoid melt inclusions in orogenic peridotite and the origin of garnet clinopyroxenite. Geology, 46, 1007–1010.10.1130/G45316.1Suche in Google Scholar
Borghini, A., Ferrero, S., O’Brien, P.J., Laurent, O., Günter, C., and Ziemann, M.A. (2020) Cryptic metasomatic agent measured in situ in Variscan mantle rocks: Melt inclusions in garnet of eclogite, Granulitgebirge, Germany. Journal of Metamorphic Geology, 38, 207–234.10.1111/jmg.12519Suche in Google Scholar
Cesare, B., Acosta-Vigil, A., Bartoli, O., and Ferrero, S. (2015) What can we learn from melt inclusions in migmatites and granulites? Lithos, 239, 186–216.10.1016/j.lithos.2015.09.028Suche in Google Scholar
Chesnokov, B.V., Lotova, E.V., Pavlyuchenko, V.S., Nigmatulina, E.N., Usova, L.V., Bushmakin, A.R., and Nishanbaev, T.P. (1989) Svyatoslavite, CaAl2Si2O8 (orthorhombic), a new mineral. Zapiski Vsesoyuz Mineralogicheskogo Obshchestva, 118, 111–114.Suche in Google Scholar
Chesnokov, B.V., Lotova, E.V., Nigmatulina, E.N., Pavlyuchenko, V.S., and Bushmakin, A.F. (1990) Dmisteinbergite CaAl2Si2O8 (hexagonal)—A new mineral. Zapiski Vsesoyuz Mineralogicheskogo Obshchestva, 119, 43–45.Suche in Google Scholar
Daniel, I., Gillet, P., McMillan, P.F., and Richet, P. (1995) An in-situ high-temperature structural study of stable and metastable CaAl2Si2O8 polymorphs. Mineralogical Magazine, 59, 25–33.10.1180/minmag.1995.59.394.03Suche in Google Scholar
Davis, G.L., and Tuttle, O.F. (1951) Two new crystalline phases of the anorthite composition, CaO-Al2O3-SiO2. American Journal of Science, 1, 107–114.Suche in Google Scholar
Di Pierro, S., and Gnos, E. (2016) Ca-Al-silicate inclusions in natural moissanite (SiC). American Mineralogist, 101, 71–81.10.2138/am-2016-5357Suche in Google Scholar
Ferrero, S., and Angel, R.J. (2018) Micropetrology: Are inclusions in minerals grains of truth? Journal of Petrology, 59, 1671–1700.10.1093/petrology/egy075Suche in Google Scholar
Ferrero, S., Ziemann, M.A., Angel, R., O’Brien, P.J., and Wunder, B. (2016) Kumdykolite, kokchetavite and cristobalite crystallized in nanogranites from felsic granulites, Orlica-Snieznik Dome (Bohemian Massif): not an evidence for ultrahigh pressure conditions. Contributions to Mineralogy and Petrology, 171, 3.10.1007/s00410-015-1220-xSuche in Google Scholar
Ferrero, S., Ague, J.J., O’Brien, P.J., Wunder, B., Remusat, L., Ziemann, M.A., and Axler, J. (2021a) High pressure, halogen-bearing melt preserved in ultra-high T felsic granulites of the Central Maine Terrane, Connecticut (U.S.). American Mineralogist, 106, 1225–1236.10.2138/am-2021-7690Suche in Google Scholar
Ferrero, S., Wannhoff, I., Laurent, O., Yakymchuk, C., Darling, R., Wunder, B., Borghini, A., and O´Brien, P.J. (2021b) Embryos of TTGs in Gore Mountain garnet megacrysts from water-fluxed melting of the lower crust. Earth and Planetary Science Letters, 569, 117058.10.1130/abs/2021AM-365946Suche in Google Scholar
Fintor, K., Park, C., Nagy, S., Pál-Molnár, E., and Krot, A.N. (2014) Hydrothermal origin of hexagonal CaAl2Si2O8 (dmisteinbergite) in a compact type A CAI from the Northwest Africa 2086 CV3 chondrite. Meteoritics & Planetary Science, 49, 812–823. 2014.10.1111/maps.12294Suche in Google Scholar
Franěk, J., Schulmann, K., and Lexa, O. (2006) Kinematic and rheological model of exhumation of high pressure granulites in the Variscan orogenic root: example of the Blanský les granulite, Bohemian Massif, Czech Republic. Mineralogy and Petrology, 86, 253–276.10.1007/s00710-005-0114-4Suche in Google Scholar
Freeman, J.J., Wang, A., Kuebler, K.E., Jolli, B.L., and Haskin, L.A. (2008) Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. Canadian Mineralogist, 46, 1477–1500.10.3749/canmin.46.6.1477Suche in Google Scholar
Goldsmith, J.R. (1953) A “simplexity principle” and its relation to “ease” of crystallization. The Journal of Geology, 61, 439–451.10.1086/626111Suche in Google Scholar
Krivovichev, S.V. (2020) Feldspar polymorphs: diversity, complexity, stability. Zapiski Rmo (Proceedings of the Russian Mineralogical Society), CXLIX, 16–66.10.31857/S0869605520040036Suche in Google Scholar
Krivovichev, S.V., Shcherbakova, E.P., and Nishanbaev, T.P. (2012) The crystal structure of svyatoslavite and evolution of complexity during crystallization of a CaAl2Si2O8 melt: a structural automata description. Canadian Mineralogist, 50, 585–592.10.3749/canmin.50.3.585Suche in Google Scholar
Lofgren, G. (1974) An experimental study of plagioclase crystal morphology: isothermal crystallization. American Journal of Science, 274, 243–273.10.2475/ajs.274.3.243Suche in Google Scholar
Ma, C., Krot, A.N., and Bizzarro, M. (2013) Discovery of dmisteinbergite (hexagonal CaAl2Si2O8) in the Allende meteorite: A new member of refractory silicates formed in the solar nebula. American Mineralogist, 98, 1368–1371.10.2138/am.2013.4496Suche in Google Scholar
Maeda, K., and Yasumori, A. (2017) Nucleation and growth of hexagonal CaAl2Si2O8 crystals in CaO-Al2O3-SiO2 glass. Materials Letters, 206, 241–244.10.1016/j.matlet.2017.07.030Suche in Google Scholar
Mittempergher, S., Dallai, L., Pennacchioni, G., Renard, F., and Di Toro, G. (2014) Origin of hydrous fluids at seismogenic depth: Constraints from natural and experimental fault rocks. Earth and Planetary Science Letters, 385, 97–109.10.1016/j.epsl.2013.10.027Suche in Google Scholar
Nestola, F., Mittempergher, S., Toro, G.D., Zorzi, F., and Pedron, D. (2010) Evidence of dmisteinbergite (hexagonal form of CaAl2Si2O8) in pseudotachylyte: A tool to constrain the thermal history of a seismic event. American Mineralogist, 95, 405–409.10.2138/am.2010.3393Suche in Google Scholar
Pyatina, T., and Sugama, T. (2020) Cements with supplementary cementitious materials for high-temperature geothermal wells. Geothermics, 86, 101840.10.1016/j.geothermics.2020.101840Suche in Google Scholar
Sirbescu, M.L.C., Schmidt, C., Veksler, I.V., Whittington, A.G., and Wilke, M. (2017) Experimental crystallization of undercooled felsic liquids: generation of pegmatitic texture. Journal of Petrology, 58, 539–568.10.1093/petrology/egx027Suche in Google Scholar
Sokol, E., Volkova, N., and Lepezin, G. (1998) Mineralogy of pyrometamorphic rocks associated with naturally burned coal-bearing spoil-heaps of the Chelyabinsk coal basin, Russia. European Journal of Mineralogy, 10, 1003–1014.10.1127/ejm/10/5/1003Suche in Google Scholar
Wannhoff, I. (2020) Melt inclusion investigation reveals first evidence of partial melting in giant garnets of Gore Mountain (Adirondacks, U.S.A.). Master thesis, Universität Potsdam.Suche in Google Scholar
Zolotarev, A.A., Krivovichev, S.V., Panikorovskii, T.L., Gurzhiy, V.V., Bocharov, V.N., and Rassomakhin, M.A. (2019) Dmisteinbergite, CaAl2Si2O8, a metastable polymorph of anorthite: Crystal-structure and raman spectroscopic study of the holotype specimen. Minerals, 9, 570.10.3390/min9100570Suche in Google Scholar
© 2022 Mineralogical Society of America
Artikel in diesem Heft
- Oxidation of arcs and mantle wedges: It’s not all about iron and water
- Paragenesis of Li minerals in the Nanyangshan rare-metal pegmatite, Northern China: Toward a generalized sequence of Li crystallization in Li-Cs-Ta-type granitic pegmatites
- The new mineral tomiolloite, Al12(Te4+O3)5[(SO3)0.5(SO4)0.5](OH)24: A unique microporous tellurite structure
- Authigenic anatase nanoparticles as a proxy for sedimentary environment and porewater pH
- Color effects of Cu nanoparticles in Cu-bearing plagioclase feldspars
- Expanding the speciation of terrestrial molybdenum: Discovery of polekhovskyite, MoNiP2, and insights into the sources of Mo-phosphides in the Dead Sea Transform area
- Sound speed and refractive index of amorphous CaSiO3 upon pressure cycling to 40 GPa
- Calorimetric study of skutterudite (CoAs2.92) and heazlewoodite (Ni3S2)
- Melting phase equilibrium relations in the MgSiO3-SiO2 system under high pressures
- Effects of hydrostaticity and Mn-substitution on dolomite stability at high pressure
- Crystallization of bastnäsite and burbankite from carbonatite melt in the system La(CO3)F-CaCO3-Na2CO3 at 100 MPa
- Crystal shapes, triglyphs, and twins in minerals: The case of pyrite
- Nanostructure reveals REE mineral crystallization mechanisms in granites from a heavy REE deposit, South China
- Paratobermorite, Ca4(Al0.5Si0.5)2Si4O16(OH)·2H2O·(Ca·3H2O), a new tobermorite-supergroup mineral with a novel topological type of the microporous crystal structure
- Morphological and chemical characterization of secondary carbonates in the Toki granite, central Japan, and the evolution of fluid chemistry
- Characteristics and formation of corundum within syenite in the Yushishan rare metal deposits in the northeastern Tibetan Plateau
- Hydrogen solubility in FeSi alloy phases at high pressures and temperatures
- First evidence of dmisteinbergite (CaAl2Si2O8 polymorph) in high-grade metamorphic rocks
- New Mineral Names
Artikel in diesem Heft
- Oxidation of arcs and mantle wedges: It’s not all about iron and water
- Paragenesis of Li minerals in the Nanyangshan rare-metal pegmatite, Northern China: Toward a generalized sequence of Li crystallization in Li-Cs-Ta-type granitic pegmatites
- The new mineral tomiolloite, Al12(Te4+O3)5[(SO3)0.5(SO4)0.5](OH)24: A unique microporous tellurite structure
- Authigenic anatase nanoparticles as a proxy for sedimentary environment and porewater pH
- Color effects of Cu nanoparticles in Cu-bearing plagioclase feldspars
- Expanding the speciation of terrestrial molybdenum: Discovery of polekhovskyite, MoNiP2, and insights into the sources of Mo-phosphides in the Dead Sea Transform area
- Sound speed and refractive index of amorphous CaSiO3 upon pressure cycling to 40 GPa
- Calorimetric study of skutterudite (CoAs2.92) and heazlewoodite (Ni3S2)
- Melting phase equilibrium relations in the MgSiO3-SiO2 system under high pressures
- Effects of hydrostaticity and Mn-substitution on dolomite stability at high pressure
- Crystallization of bastnäsite and burbankite from carbonatite melt in the system La(CO3)F-CaCO3-Na2CO3 at 100 MPa
- Crystal shapes, triglyphs, and twins in minerals: The case of pyrite
- Nanostructure reveals REE mineral crystallization mechanisms in granites from a heavy REE deposit, South China
- Paratobermorite, Ca4(Al0.5Si0.5)2Si4O16(OH)·2H2O·(Ca·3H2O), a new tobermorite-supergroup mineral with a novel topological type of the microporous crystal structure
- Morphological and chemical characterization of secondary carbonates in the Toki granite, central Japan, and the evolution of fluid chemistry
- Characteristics and formation of corundum within syenite in the Yushishan rare metal deposits in the northeastern Tibetan Plateau
- Hydrogen solubility in FeSi alloy phases at high pressures and temperatures
- First evidence of dmisteinbergite (CaAl2Si2O8 polymorph) in high-grade metamorphic rocks
- New Mineral Names