Home Expanding the speciation of terrestrial molybdenum: Discovery of polekhovskyite, MoNiP2, and insights into the sources of Mo-phosphides in the Dead Sea Transform area
Article
Licensed
Unlicensed Requires Authentication

Expanding the speciation of terrestrial molybdenum: Discovery of polekhovskyite, MoNiP2, and insights into the sources of Mo-phosphides in the Dead Sea Transform area

  • Sergey N. Britvin , Mikhail N. Murashko , Oleg S. Vereshchagin ORCID logo , Yevgeny Vapnik , Vladimir V. Shilovskikh ORCID logo , Natalia S. Vlasenko and Vitalii V. Permyakov
Published/Copyright: December 1, 2022
Become an author with De Gruyter Brill

Abstract

Polekhovskyite, MoNiP2, is the first terrestrial Mo phosphide, a phosphorus-rich homolog of meteoritic monipite, MoNiP. The mineral represents a novel phosphide type of terrestrial Mo speciation. It was discovered among phosphide assemblages in pyrometamorphic rocks of the Hatrurim Formation (the Mottled Zone) in Israel, the area confined to the Dead Sea Transform fault system. Polekhovskyite occurs in the altered diopside microbreccia, as micrometer-sized euhedral crystals intimately intergrown with murashkoite, FeP and transjordanite, Ni2P, in association with Si-rich fluorapatite, hematite, and magnetite. In reflected light, the mineral has a bluish-gray color with no observable bireflectance and anisotropy. Chemical composition (electron microprobe, wt%): Mo 44.10, Ni 22.73, Fe 4.60, P 29.02, total 100.45, which corresponds to the empirical formula Mo0.99(Ni0.83Fe0.18)1.01P2.01 and leads to the calculated density of 6.626 g/cm. Polekhovskyite is hexagonal, space group P63/mmc, a = 3.330(1), c = 11.227(4) Å, V = 107.82(8) Å3, and Z = 2. The crystal structure has been solved and refined to R1 = 0.0431 based on 50 unique observed reflections. The occurrence of Mo-bearing phosphides at the Dead Sea Transform area is a regional-scale phenomenon, with the localities tracked across both Israel and Jordan sides of the Dead Sea. The possible sources of Mo required for the formation of Mo-bearing phosphides are herein reviewed; they are likely related to the processes of formation of the Dead Sea Transform fault system. The problem of anthropogenic contamination of geological samples with Mo and Ni is also discussed in the paper in the context of the general aspects of discrimination between natural and technogenic ultra-reduced phases.

Acknowledgments and Funding

The authors are indebted to the referees, Robert Hazen and Chris Ballhaus, for the linguistic support, helpful comments, and suggestions, and to Fabrizio Nestola for editorial handling of the manuscript. This work was carried out with financial support of the Russian Science Foundation, grant 18-17-00079. The instrumental resources were provided by the Centre for X‑ray Diffraction Studies and Geomodel Resource Center of Saint Petersburg State University.

References cited

Agnew, S.R., Keene, J.I., Dong, L., Shamsujjoha, M., O’Masta, M.R., and Wadley, H.N.G. (2017) Microstructure characterization of large TiC-Mo-Ni cermet tiles. International Journal of Refractory Metals and Hard Materials, 68, 84–95.10.1016/j.ijrmhm.2017.07.004Search in Google Scholar

Al-Tawalbeh, M., Atallah, M., and Al Tamimi, M. (2017) Structural evolution of the area north of Ajloun Dome, Jordan. Jordan Journal of Earth and Environmental Sciences, 8, 55–60.Search in Google Scholar

Amelin, Y., Kaltenbach, A., Iizuka, T., Stirling, C.H., Ireland, T.R., Petaev, M., and Jacobsen, S.B. (2010) U–Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Earth and Planetary Science Letters, 300, 343–350.10.1016/j.epsl.2010.10.015Search in Google Scholar

American Welding Society (2007) Brazing Handbook, 5th ed. American Welding Society.Search in Google Scholar

Armstrong, T., Hutcheon, I.D., and Wasserburg, G.J. (1987) Zelda and company: Petrogenesis of sulfide-rich Fremdlinge and constraints on solar nebula processes. Geochimica et Cosmochimica Acta, 51, 3155–3173.10.1016/0016-7037(87)90125-6Search in Google Scholar

Ballhaus, C., Helmy, H.M., Fonseca, R.O.C., Wirth, R., Schreiber, A., and Jöns, N. (2021) Ultra-reduced phases in ophiolites cannot come from Earth’s mantle. American Mineralogist, 106, 1053–1063.10.46427/gold2020.112Search in Google Scholar

Ben-Avraham, Z. (2014) Geophysical studies of the crustal structure along the southern Dead Sea Fault. In Z. Garfunkel, Z. Ben-Avraham, and E. Kagan, Ed., Dead Sea Transform Fault System: Reviews, p. 1–28. Springer.10.1007/978-94-017-8872-4_1Search in Google Scholar

Ben-Avraham, Z., Garfunkel, Z., and Lazar, M. (2008) Geology and evolution of the Southern Dead Sea Fault with emphasis on subsurface structure. Annual Review of Earth and Planetary Sciences, 36, 357–387.10.1146/annurev.earth.36.031207.124201Search in Google Scholar

Bindi, L., Zaccarini, F., Ifandi, E., Tsikouras, B., Stanley, C., Garuti, G., and Mauro, D. (2020) Grammatikopoulosite, NiVP, a new phosphide from the chromitite of the Othrys ophiolite, Greece. Minerals, 10, 13110.3390/min10020131Search in Google Scholar

Bogoch, R., Gilat, A., Yoffe, O., and Ehrlich, S. (1999) Rare earth trace element distributions in the Mottled Zone complex, Israel. Israel Journal of Earth Sciences, 48, 225–234.Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Y., Polekhovsky, Y.S., and Krivovichev, S.V. (2015) Earth’s phosphides in Levant and insights into the source of Archaean prebiotic phosphorus. Scientific Reports, 5, 8355.10.1038/srep08355Search in Google Scholar PubMed PubMed Central

Britvin, S.N., Murashko, M.N., Vapnik, Y., Polekhovsky, Y.S., Krivovichev, S.V., Vereshchagin, O.S., Vlasenko, N.S., Shilovskikh, V.V., and Zaitsev, A.N. (2019a) Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2. Physics and Chemistry of Minerals, 46, 361–369.10.1007/s00269-018-1008-4Search in Google Scholar

Britvin, S.N., Vapnik, Y., Polekhovsky, Y.S., Krivovichev, S.V., Krzhizhanovskaya, M.G., Gorelova, L.A., Vereshchagin, O.S., Shilovskikh, V.V., and Zaitsev, A.N. (2019b) Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, Southern Levant. Mineralogy and Petrology, 113, 237–248.10.1007/s00710-018-0647-ySearch in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Y., Zaitsev, A.N., Shilovskikh, V.V., Vasiliev, E.A., Krzhizhanovskaya, M.G., and Vlasenko, N.S. (2019c) IMA 2019-039. CNMNC Newsletter No. 51. Mineralogical Magazine, 83, 759.Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Y., Polekhovsky, Y.S., Krivovichev, S.V., Krzhizhanovskaya, M.G., Vereshchagin, O.S., Shilovskikh, V.V., and Vlasenko, N.S. (2020a) Transjordanite, Ni2P, a new terrestrial and meteoritic phosphide, and natural solid solutions barringerite-transjordanite (hexagonal Fe2P-Ni2P). American Mineralogist, 105, 428–436.10.2138/am-2020-7275Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Y., Polekhovsky, Y.S., Krivovichev, S.V., Vereshchagin, O.S., Shilovskikh, V.V., Vlasenko, N.S., and Krzhizhanovskaya, M.G. (2020b) Halamishite, Ni5P4, a new terrestrial phosphide in the Ni–P system. Physics and Chemistry of Minerals, 47, 3.10.1007/s00269-019-01073-7Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Y., Polekhovsky, Y.S., Krivovichev, S.V., Vereshchagin, O.S., Shilovskikh, V.V., and Krzhizhanovskaya, M.G. (2020c) Negevite, the pyrite-type NiP2, a new terrestrial phosphide. American Mineralogist, 105, 422–427.10.2138/am-2020-7192Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Y., Vlasenko, N.S., Krzhizhanovskaya, M.G., Vereshchagin, O.S., Bocharov, V.N., and Lozhkin, M.S. (2021a) Cyclo-phosphates, a new class of native phosphorus compounds, and some insights into prebiotic phosphorylation on early Earth. Geology, 49, 382–386.10.1130/G48203.1Search in Google Scholar

Britvin, S.N., Vereshchagin, O.S., Shilovskikh, V.V., Krzhizhanovskaya, M.G., Gorelova, L.A., Vlasenko, N.S., Pakhomova, A.S., Zaitsev, A.N., Zolotarev, A.A., Bykov, M., Lozhkin, M.S., and Nestola, F. (2021b) Discovery of terrestrial allabogdanite (Fe,Ni)2P, and the effect of Ni and Mo substitution on the barringerite-allabogdanite high-pressure transition. American Mineralogist, 106, 944–952.10.2138/am-2021-7621Search in Google Scholar

Britvin, S.N., Krzhizhanovskaya, M.G., Zolotarev, A.A., Gorelova, L.A., Obolonskaya, E.V., Vlasenko, N.S., Shilovskikh, V.V., and Murashko, M.N. (2021c) Crystal chemistry of schreibersite, (Fe,Ni)3P. American Mineralogist, 106, 1520–1533.10.2138/am-2021-7766Search in Google Scholar

Britvin, S.N., Galuskina, I.O., Vlasenko, N.S., Vereshchagin, O.S., Bocharov, V.N., Krzhizhanovskaya, M.G., Shilovskikh, V.V., Galuskin, E.V., Vapnik, Y.V., and Obolonskaya, E.V. (2021d) Keplerite, Ca9(Ca0.50.5)Mg(PO4)7, a new meteoritic and terrestrial phosphate isomorphous with merrillite, Ca9NaMg(PO4)7. American Mineralogist, 106, 1917–1927.10.2138/am-2021-7834Search in Google Scholar

Britvin, S.N., Vlasenko, N.S., Aslandukov, A., Aslandukovа, A., Dubrovinsky, L., Gorelova, L.A., Krzhizhanovskaya, M.G., Vereshchagin, O.S., Bocharov, V.N., Shelukhina, Y.S., Lozhkin, M.S., Zaitsev, A.N., and Nestola, F. (2022) Natural cubic perovskite, Ca(Ti,Si,Cr)O3–δ, a versatile potential host for rock-forming and less-common elements up to Earth’s mantle pressure. American Mineralogist, 107, 1936–1945.10.2138/am-2022-8186Search in Google Scholar

Burg, A., Starinsky, A., Bartov, Y., and Kolodny, Y. (1992) Geology of the Hatrurim Formation (“Mottled Zone”) in the Hatrurim basin. Israel Journal of Earth Sciences, 40, 107–124.Search in Google Scholar

Burns, S., Hargreaves, J.S.J., and Hunter, S.M. (2007) On the use of methane as a reductant in the synthesis of transition metal phosphides. Catalysis Communications, 8, 931–935.10.1016/j.catcom.2006.10.001Search in Google Scholar

Butler, O.T., Cairns, W.R.L., Cook, J.M., and Davidson, C.M. (2017) Atomic spectrometry update—A review of advances in environmental analysis. Journal of Analytical Atomic Spectrometry, 32, 11–57.10.1039/C6JA90058ESearch in Google Scholar

Darolia, R. (2019) Development of strong, oxidation and corrosion resistant nickel-based superalloys: critical review of challenges, progress and prospects. International Materials Reviews, 64, 355–380.10.1080/09506608.2018.1516713Search in Google Scholar

Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: A complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339–341.10.1107/S0021889808042726Search in Google Scholar

Dowty, E. (2006) ATOMS for Windows. Shape Software.Search in Google Scholar

El Goresy, A., Nagel, K., and Ramdohr, P. (1978) Fremdlinge and their noble relatives. Proceedings of the Lunar and Planetary Science Conference, 9, 1279–1303.Search in Google Scholar

Erickson, B.E., and Helz, G.R. (2000) Molybdenum(VI) speciation in sulfidic waters: stability and lability of thiomolybdates. Geochimica et Cosmochimica Acta, 64, 1149–1158.10.1016/S0016-7037(99)00423-8Search in Google Scholar

Fleurance, S., Cuney, M., Malartre, M., and Reyx, J. (2013) Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous– Early Tertiary Belqa Group, central Jordan. Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 201–219.10.1016/j.palaeo.2012.10.020Search in Google Scholar

Fuchs, L.H., and Blander, M. (1977) Molybdenite in calcium-aluminium-rich inclusions in the Allende meteorite. Geochimica et Cosmochimica Acta, 41, 1170–1174.10.1016/0016-7037(77)90114-4Search in Google Scholar

Galuskin, E., Galuskina, I., Vapnik, Y., and Murashko, M. (2020) Molecular hydrogen in natural mayenite. Minerals, 10, 560.10.3390/min10060560Search in Google Scholar

Galuskina, I.O., Galuskin, E.V., Prusik, K., Vapnik, Y., Juroszek, R., Jeżak, L., and Murashko, M. (2017) Dzierżanowskite, CaCu2S2—A new natural thiocuprate from Jabel Harmun, Judean Desert, Palestine Autonomy, Israel. Mineralogical Magazine, 81, 1073–1085.10.1180/minmag.2016.080.153Search in Google Scholar

Geller, Y.I., Burg, A., Halicz, L., and Kolodny, Y. (2012) System closure during the combustion metamorphic “Mottled Zone” event, Israel. Chemical Geology, 334, 25–36.10.1016/j.chemgeo.2012.09.029Search in Google Scholar

Ghasali, E., Ebadzadeh, T., Alizadeh, M., and Razavi, M. (2018) Mechanical and microstructural properties of WC-based cermets: A comparative study on the effect of Ni and Mo binder phases. Ceramics International, 44, 2283–2291.10.1016/j.ceramint.2017.10.189Search in Google Scholar

Gilat, A. (1994) Tectonic and associated mineralization activity, Southern Judea, Israel. Geological Survey of Israel, Report GSI/19/94, 322 p.Search in Google Scholar

Greaney, A.T., Rudnick, R.L., Gaschnig, R.M., Whalen, J.B., Luais, B., and Clemens, J.D. (2018) Geochemistry of molybdenum in the continental crust. Geochimica et Cosmochimica Acta, 238, 36–54.10.1016/j.gca.2018.06.039Search in Google Scholar

Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70, 1–80.Search in Google Scholar

Guérin, R. (1976) Nouveaux arséniures et phosphures ternaires de molybdène ou de tungstène et d’éléments 3d, à chaînes métal–métal: Structures et Propriétés. Ph.D. thesis, Univerity of Rennes, 263 p.10.1016/0025-5408(77)90055-1Search in Google Scholar

Guérin, R., and Sergent, M. (1976) Nouveau phosphure ternaire: NiMoP2, a chaine linéaire infinite –Mo–Ni–Mo– et composés isotypes: NiWP2, CoMoP2 et CoWP2. Journal of Solid State Chemistry, 18, 317–323.10.1016/0022-4596(76)90113-4Search in Google Scholar

Guérin, R., and Sergent, M. (1977) Nouveaux arseniures et phosphures ternaires de molybdene ou de tungstene et d’elements 3d, de formule: M2–xMexX (M = élément 3d; Me = Mo, W; X = As, P). Materials Research Bulletin, 12, 381–388.10.1016/0025-5408(77)90055-1Search in Google Scholar

Guérin, R., Sergent, M., and Chaudron, G. (1975) Synthese et étude radiocristallographique des systemes MP − MoP et MP − WP (M = element 3d). Comptes Rendus Des Academie Sciences Serie C, 281, 777–780.Search in Google Scholar

Gur, D., Steinitz, G., Kolodny, Y., Starinsky, A., and McWilliams, M. (1995) 40Ar/39Ar dating of combustion metamorphism (“Mottled Zone”, Israel). Chemical Geology, 122, 171–184.10.1016/0009-2541(95)00034-JSearch in Google Scholar

Hazen, R.M., Grew, E.S., Origlieri, M., and Downs, R.T. (2017) On the mineralogy of the “Anthropocene Epoch”. American Mineralogist, 102, 595–611.10.2138/am-2017-5875Search in Google Scholar

Ilani, S., Kronfeld, J., and Flexer, A. (1985) Iron-rich veins related to structural lineaments, and the search for base metals in Israel. Journal of Geochemical Exploration, 24, 197–206.10.1016/0375-6742(85)90045-7Search in Google Scholar

Issar, A., Eckstein, Y., and Bogoch, R. (1969) A possible thermal spring deposit in the Arad area, Israel. Israel Journal of Earth Sciences, 18, 17–20.Search in Google Scholar

Jalilian, F., Jahazi, M., and Drew, R.A.L. (2013) Microstructure evolution during transient liquid phase bonding of alloy 617. Metallography, Microstructure, and Analysis, 2, 170–182.10.1007/s13632-013-0070-zSearch in Google Scholar

Juroszek, R., Krüger, B., Galuskina, I., Krüger, H., Vapnik, Y., and Galuskin, E. (2020) Siwaqaite, Ca6Al2(CrO4)3(OH)12·26H2O, a new mineral of the ettringite group from the pyrometamorphic Daba-Siwaqa complex, Jordan. American Mineralogist, 105, 409–421.10.2138/am-2020-7208Search in Google Scholar

Kendall, B., Dahl, T.W., and Anbar, A.D. (2017) The stable isotope geochemistry of molybdenum. Reviews in Mineralogy and Geochemistry, 82, 683–732.10.2138/rmg.2017.82.16Search in Google Scholar

Khoury, H.N. (2020) High- and low-temperature mineral phases from the pyrometamorphic rocks, Jordan. Arabian Journal of Geosciences, 13, 734.10.1007/s12517-020-05691-2Search in Google Scholar

Krishnan, K.H., John, S., Srinivasan, K., Praveen, J., Ganesan, M., and Kavimani, P. (2006) An overall aspect of electroless Ni-P depositions—A review article. Metallurgical and Materials Transactions A, 37, 1917–1926.10.1007/s11661-006-0134-7Search in Google Scholar

Lazoryak, B.I., Belik, A.A., Kotov, R.N., Leonidov, I.A., Mitberg, E.B., Karelina, V.V., Kellerman, D.G., Stefanovich, S.Y., and Avetisov, A.K. (2003) Reduction and re-oxidation behavior of calcium iron phosphate, Ca9Fe(PO4)7. Chemistry of Materials, 15, 625–631.10.1021/cm010851lSearch in Google Scholar

Litasov, K.G., Kagi, H., and Bekker, T.B. (2018) Enigmatic super-reduced phases in corundum from natural rocks: Possible contamination from artificial abrasive materials or metallurgical slags. Lithos, 340, 181–190.10.1016/j.lithos.2019.05.013Search in Google Scholar

Litasov, K.D., Kagi, H., Voropaev, S.A., Hirata, T., Ohfuji, H., Ishibashi, H., Makino, Y., Bekker, T.B., Sevastyanov, V.S., Afanasiev, V.P., and Pokhilenko, N.P. (2019) Comparison of enigmatic diamonds from the Tolbachik arc volcano (Kamchatka) and Tibetan ophiolites: Assessing the role of contamination by synthetic materials. Gondwana Research, 75, 16–27.10.1016/j.gr.2019.04.007Search in Google Scholar

Loginov, P.A., Sidorenko, D.A., Bychkova, M.Y., Zaitsev, A.A., and Levashov, E.A. (2019) Performance of diamond drill bits with hybrid nanoreinforced Fe-Ni-Mo binder. The International Journal of Advanced Manufacturing Technology, 102, 2041–2047.10.1007/s00170-018-03262-0Search in Google Scholar

Ma, C., Beckett, J.R., and Rossman, G.R. (2014) Monipite, MoNiP, a new phosphide mineral in a Ca-Al-rich inclusion from the Allende meteorite. American Mineralogist, 99, 198–205.10.2138/am.2014.4512Search in Google Scholar

Magaritz, M., Issar, A., and Azmon, E. (1983) On the genesis of discordant dolostone bodies in the northeastern Negev, Israel. Chemical Geology, 39, 93–114.10.1016/0009-2541(83)90074-8Search in Google Scholar

Murashko, M.N., Vapnik, Y., Polekhovsky, Y.P., Shilovskikh, V.V., Zaitsev, A.M., Vereshchagin, O.S., and Britvin, S.N. (2019) Nickolayite, IMA 2018-126. CNMNC Newsletter No. 47. Mineralogical Magazine, 83, 146.Search in Google Scholar

Nathan, Y., Shiloni, Y., Roded, R., Gal, I., and Deutsch, Y. (1979) The geochemistry of the northern Negev phosphorites (Southern Israel). Geological Survey of Israel, Bulletin, 73, 41 p.Search in Google Scholar

Novikov, I., Vapnik, Y., and Safonova, I. (2013) Mud volcano origin of the Mottled Zone, Southern Levant. Geoscience Frontiers, 4, 597–619.10.1016/j.gsf.2013.02.005Search in Google Scholar

Oryshchyn, S.V., Le Sénéchal, C., Députier, S., Bauer, J., Guérin, R., and Akselrud, L.G. (2001) New ternary phases in the Mo-Ni-P system: Synthesis and crystal structures. Journal of Solid State Chemistry, 160, 156–166.10.1006/jssc.2001.9210Search in Google Scholar

Panov, V.S. (2020) Tungsten-free hard alloys: an analytical review. Inorganic Materials: Applied Research, 11, 823–829.10.1134/S2075113320040310Search in Google Scholar

Pasek, M., and Block, K. (2009) Lightning-induced reduction of phosphorus oxidation state. Nature Geoscience, 2, 553–556.10.1038/ngeo580Search in Google Scholar

Pekov, I.V., Zubkova, N.V., Koshlyakova, N.N., Belakovskiy, D.I., Agakhanov, A.A., Vigasina, M.F., Britvin, S.N., Sidorov, E.G., and Pushcharovsky, D.Y. (2020) Rhabdoborite-(V), rhabdoborite-(Mo) and rhabdoborite-(W): a new group of borate minerals with the general formula Mg12M11/3O6 [(BO3)6–x(PO4)x F2–x] (M = V5+, Mo6+ or W6+ and x < 1). Physics and Chemistry of Minerals, 47, 44.10.1007/s00269-020-01105-7Search in Google Scholar

Picard, L. (1931) Geological researches in the Judean Desert, 108 p. Goldberg Press, Jerusalem.Search in Google Scholar

Rabinkin, A., Shapiro, A.E., and Boretius, M. (2013) Brazing of diamonds and cubic boron nitride. in: Advances in Brazing: Science, Technology and Applications, Cambridge, Woodhead Publishing, 160–193.10.1533/9780857096500.2.160Search in Google Scholar

Ryb, U., Erel, Y., Matthews, A., Avni, Y., Gordon, G.W., and Anbar, A.D. (2009) Large molybdenum isotope variations trace subsurface fluid migration along the Dead Sea transform. Geology, 37, 463–466.10.1130/G25331A.1Search in Google Scholar

Schmidt, P.F., and Pearce, C.W. (1981) A neutron activation analysis study of the sources of transition group metal contamination in the silicon device manufacturing process. Journal of the Electrochemical Society, 128, 630–637.10.1149/1.2127472Search in Google Scholar

Sertek, J.P., Andrade, S., and Ulbrich, H.H. (2015) An evaluation of the effects of primary and cross-contamination during the preparation of rock Powders for chemical determinations. Geostandards and Geoanalytical Research, 39, 381–397.10.1111/j.1751-908X.2014.00324.xSearch in Google Scholar

Sharygin, V.V., Vapnik, Y., Sokol, E.V., Kamenetsky, V.S., and Shagam, R. (2016) Melt inclusions in minerals of schorlomite-rich veins of the Hatrurim Basin, Israel: Composition and homogenization temperatures. In P. Ni and Z. Li, Eds., Proceedings of the ACROFI I, p. 189–192. Elsevier.Search in Google Scholar

Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 3–8.Search in Google Scholar

Smedley, P.L., and Kinniburgh, D.G. (2017) Molybdenum in natural waters: A review of occurrence, distributions and controls. Applied Geochemistry, 84, 387–432.10.1016/j.apgeochem.2017.05.008Search in Google Scholar

Sokol, E.V., Novikov, I.S., Vapnik, Y., and Sharygin, V.V. (2007) Gas fire from mud volcanoes as a trigger for the appearance of high-temperature pyrometamorphic rocks of the Hatrurim Formation (Dead Sea area). Doklady Earth Sciences, 413, 474–480 (in Russian).10.1134/S1028334X07030348Search in Google Scholar

Sokol, E.V., Kokh, S.N., Seryotkin, Y.V., Deviatiiarova, A.S., Goryainov, S.V., Sharygin, V.V., Khoury, H.N., Karmanov, N.S., Danilovsky, V.A., and Artemyev, D.A. (2020) Ultrahigh-temperature sphalerite from Zn-Cd-Se-rich combustion metamorphic marbles, Daba complex, Central Jordan: Paragenesis, Chemistry, and Structure. Minerals, 10, 822.10.3390/min10090822Search in Google Scholar

Vapnik, Y., Sharygin, V.V., Sokol, E.V., and Shagam, R. (2007) Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel. The Geological Society of America, Reviews in Engineering Geology, 18, 133–153.Search in Google Scholar

Vapnik, Y., Galuskina, I., Palchik, V., Sokol, E.V., Galuskin, E., Lindsley-Griffin, N., and Stracher, G.B. (2015) Stone-tool workshops of the Hatrurim Basin, Israel. In G.B. Stracher, A. Prakash, and E.V. Sokol, Eds., Coal and Peat Fires: A Global Perspective 3, p. 281–316. Elsevier.10.1016/B978-0-444-59509-6.00010-7Search in Google Scholar

Vargas, L., Barba, A., Sánchez, F., and Bolarín, A. (2006) Age hardening of Ni-P-Mo electroless deposit. Surface Engineering, 22, 58–62.10.1179/174329406X84976Search in Google Scholar

Voncken, H.L., Scheepers, E., and Yang, Y. (2006) Analysis of uranium-bearing Fe-phosphide grain from a submerged arc furnace for phosphorus production. Mineralogy and Petrology, 88, 407–418.10.1007/s00710-005-0115-3Search in Google Scholar

Xiong, F., Xu, X., Mugnaioli, E., Gemmi, M., Wirth, R., Grew, E.S., Robinson, P.T., and Yang, J. (2020) Two new minerals, badengzhuite, TiP, and zhiqinite, TiSi2, from the Cr-11 chromitite orebody, Luobusa ophiolite, Tibet, China: is this evidence for super-reduced mantle-derived fluids? European Journal of Mineralogy, 32, 557–574.10.5194/ejm-32-557-2020Search in Google Scholar

Zaccarini, F., Bindi, L., Ifandi, E., Grammatikopoulos, T., Stanley, C., Garuti, G., and Mauro, D. (2019) Tsikourasite, Mo3Ni2P1+x (x < 0.25), a new phosphide from the chromitite of the Othrys ophiolite, Greece. Minerals, 9, 248.10.3390/min9040248Search in Google Scholar

Received: 2021-08-19
Accepted: 2021-11-27
Published Online: 2022-12-01
Published in Print: 2022-12-16

© 2022 Mineralogical Society of America

Articles in the same Issue

  1. Oxidation of arcs and mantle wedges: It’s not all about iron and water
  2. Paragenesis of Li minerals in the Nanyangshan rare-metal pegmatite, Northern China: Toward a generalized sequence of Li crystallization in Li-Cs-Ta-type granitic pegmatites
  3. The new mineral tomiolloite, Al12(Te4+O3)5[(SO3)0.5(SO4)0.5](OH)24: A unique microporous tellurite structure
  4. Authigenic anatase nanoparticles as a proxy for sedimentary environment and porewater pH
  5. Color effects of Cu nanoparticles in Cu-bearing plagioclase feldspars
  6. Expanding the speciation of terrestrial molybdenum: Discovery of polekhovskyite, MoNiP2, and insights into the sources of Mo-phosphides in the Dead Sea Transform area
  7. Sound speed and refractive index of amorphous CaSiO3 upon pressure cycling to 40 GPa
  8. Calorimetric study of skutterudite (CoAs2.92) and heazlewoodite (Ni3S2)
  9. Melting phase equilibrium relations in the MgSiO3-SiO2 system under high pressures
  10. Effects of hydrostaticity and Mn-substitution on dolomite stability at high pressure
  11. Crystallization of bastnäsite and burbankite from carbonatite melt in the system La(CO3)F-CaCO3-Na2CO3 at 100 MPa
  12. Crystal shapes, triglyphs, and twins in minerals: The case of pyrite
  13. Nanostructure reveals REE mineral crystallization mechanisms in granites from a heavy REE deposit, South China
  14. Paratobermorite, Ca4(Al0.5Si0.5)2Si4O16(OH)·2H2O·(Ca·3H2O), a new tobermorite-supergroup mineral with a novel topological type of the microporous crystal structure
  15. Morphological and chemical characterization of secondary carbonates in the Toki granite, central Japan, and the evolution of fluid chemistry
  16. Characteristics and formation of corundum within syenite in the Yushishan rare metal deposits in the northeastern Tibetan Plateau
  17. Hydrogen solubility in FeSi alloy phases at high pressures and temperatures
  18. First evidence of dmisteinbergite (CaAl2Si2O8 polymorph) in high-grade metamorphic rocks
  19. New Mineral Names
Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2022-8261/html
Scroll to top button