The nature of Zn-phyllosilicates in the nonsulfide Mina Grande and Cristal zinc deposits (Bongará District, Northern Peru): The TEM-HRTEM and AEM perspective
-
Giuseppina Balassone
, Valentina Scognamiglio
Abstract
Zn-phyllosilicates are common minerals in nonsulfide Zn deposits and can give crucial information about the genesis of these oxidized mineralizations. They seldom represent the prevailing economic species but might have a significant impact on mineral processing. This study has been carried out on the Mina Grande and Cristal Zn-sulfide/nonsulfide deposits, which occur in the Bongará district (Amazonas region, northern Peru). The Cristal and Mina Grande orebodies are hosted by the sedimentary (prevailingly carbonate) successions of the Pucará Group (Condorsinga formation, Lower Jurassic), in an area affected by Neogene tectonics and characterized by Late Miocene and Pliocene-Early Pleistocene uplift phases (Andean and Quechua tectonic pulses). The Cristal deposit consists of both sulfide (sphalerite with minor pyrite and galena) and nonsulfide concentrations. The nonsulfides consists of smithsonite, hemimorphite, hydrozincite, chalcophanite, goethite, and greenockite, locally associated with Zn-bearing phyllosilicates. The Mina Grande deposit consists almost exclusively of Zn-oxidized minerals in limestone host rocks. The nonsulfides association consists of hydrozincite, hemimorphite, smithsonite, fraipontite, and Fe-(hydr)oxides, also containing a clayey fraction. The study deals with TEM-HRTEM and AEM investigations on clayey materials, to determine their crystal-chemical features and the origin of the complex Zn-clays-bearing parageneses. In both deposits, Zn-bearing illites (1Md and 2M polytypes) and I/S clay minerals (I3) are the main detected phases, with few compositions close to (Zn-bearing) muscovite. In the clayey fraction at Mina Grande, fraipontite, a Zn-bearing mica called K-deficient hendricksite, and (Zn-bearing) kaolinite also occur. Zn-illites and smectites (always containing Zn in variable amounts) characterize the mineral association at Cristal. The investigated compositional gap between di- and tri-octahedral Zn-phyllosilicates gives indications on the genetic relationships between them and advances on the knowledge of these species. The present work gives an insight into the Zn-bearing phyllosilicates systems by determining the amount/mode of metal incorporation in their lattices and understanding the relationships of natural occurring clay-rich complex associations, which can act as models for possible synthetic counterparts.
Acknowledgments
The authors are indebted to M.M. Abad-Ortega and C. de la Prada Sánchez (CIC, Granada) for the skillful support during TEM analyses, and to R. de Gennaro (DiSTAR, Napoli) for his invaluable help during SEM analyses. The authors thank two anonymous Referees, who provided constructive reviews that greatly improved the manuscript, and the Associate Editor Andrew E. Madden for handling the manuscript.
Funding
This work was partly supported by Departmental funds 2017 (University of Napoli Federico II) granted to G. Balassone and by the research projects CGL2016-75679-P from the Spanish Government and the Research Group RNM-179 of the Junta de Andalucìa.
References cited
Abad, M.M., and Nieto, F. (2003) Quantitative EDX analysis in TEM. Practical development, limitations and standards. In A. Mendez-Vilas, Ed., Science, Technology and Education of Microscopy: An Overview, p. 687–694. Badajoz, Spain, Formatex.Suche in Google Scholar
Arfè, G. (2018) Genesis of supergene nonsulfide zinc minerallizations in the Bongará (Peru) and Skorpion-Rosh Pinah (Namibia) areas, 266 p. Ph.D. thesis, Università Federico II, Napoli ItalySuche in Google Scholar
Arfè, G., Boni, M., Mondillo, N., Aiello, R., and Balassone, G. (2016) Supergene alteration in the Capricornio Au-Ag epithermal vein system, Antofagasta Region, Chile. Canadian Mineralogist, 54, 1–25.10.3749/canmin.1600012Suche in Google Scholar
Arfè, G., Mondillo, N., Balassone, G., Boni, M., Cappelletti, P., and Di Palma, T. (2017a) Identification of Zn-micas and clays from the Cristal and Mina Grande zinc deposits (Bongará Province, Amazonas Region, Northern Peru). Minerals, 7(11), 214, 1–17.10.3390/min7110214Suche in Google Scholar
Arfè, G., Mondillo, N., Boni, M., Balassone, G., Joachimski, M., Mormone, A., and Di Palma, T. (2017b) The karst-hosted Mina Grande nonsulfide zinc deposit, Bongará district (Amazonas region, Peru). Economic Geology, 112, 1089–1110.10.5382/econgeo.2017.4503Suche in Google Scholar
Arfè, G., Mondillo, N., Boni, M., Joachimski, M., Balassone, G., Mormone, A., Santoro, L., and Castro Medrano, E. (2018) The Cristal Zn prospect (Amazonas region, Northern Peru). Part II: An example of supergene zinc enrichments in tropical areas. Ore Geology Review, 94, 1076–1105.10.1016/j.oregeorev.2017.11.022Suche in Google Scholar
Balassone, G., Nieto, F., Arfè, G., Boni, M., and Mondillo, N. (2017) Zn-clay minerals in the Skorpion Zn nonsulfide deposit (Namibia): Identification and genetic clues revealed by HRTEM and AEM study. Applied Clay Sciences, 150, 309–322.10.1016/j.clay.2017.09.034Suche in Google Scholar
Bauluz, B., Peacor, D.R., and González-López, J.M. (2000) Transmission electron microscopy study of illitization in pelites from the Iberian Range, Spain: layer-by-layer replacement? Clays and Clay Minerals, 48, 374–384.10.1346/CCMN.2000.0480308Suche in Google Scholar
Benavides-Cáceres, V. (1999) Orogenic evolution of the Peruvian Andes: the Andean Cycle. Society of Economic Geologists Special Publication, 7, 61–107.Suche in Google Scholar
Boni, M. (2005) The geology and mineralogy of nonsulfide zinc ore deposits. In T. Fujisawa, Ed., Proceedings of Lead & Zinc ‘05 Kyoto, p. 1299–1314. Mining and Materials Processing Institute, Japan.Suche in Google Scholar
Boni, M., and Mondillo, N. (2015) The “Calamines” and the “Others”: the great family of supergene nonsulfide zinc ores. Ore Geology Reviews, 67, 208–233.10.1016/j.oregeorev.2014.10.025Suche in Google Scholar
Boni, M., Balassone, G., Arseneau, V., and Schmidt, P. (2009a) The nonsulfide zinc deposit at Accha (Southern Peru): geological and mineralogical characterization. Economic Geology, 104, 267–289.10.2113/gsecongeo.104.2.267Suche in Google Scholar
Boni, M., Schmidt, P.R., De Wet, J.R., Singleton, J.D., Balassone, G., and Mondillo, N. (2009b) Mineralogical signature of nonsulfide zinc ores at Accha (Peru): A key for recovery. International Journal of Mineral Processing, 93, 267–277.10.1016/j.minpro.2009.10.003Suche in Google Scholar
Borg, G., Kärner, K., Buxton, M., Armstrong, R., and Merwe, S.W. (2003) Geology of the Skorpion supergene Zn deposit, southern Namibia. Economic Geology, 98, 749–771.10.2113/gsecongeo.98.4.749Suche in Google Scholar
Brigatti, M.F., and Guggenheim, S. (2002) Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models. Reviews in Mineralogy and Geochemistry, 46(1), 1–97.10.2138/rmg.2002.46.01Suche in Google Scholar
Brophy, J.A. (2012) Rio Cristal Resources Corporation Bongará zinc project. Technical Report NI 43-101, 104. Canada, Rio Cristal Resources.Suche in Google Scholar
Buatier, M., Choulet, F., Petit, S., Chassagnon, R., and Vennemann, T. (2016) Nature and origin of natural Zn clay minerals from the Bou Arhous Zn ore deposit. Evidence from electron microscopy (SEM-TEM) and stable isotope compositions (H and O). Applied Clay Sciences, 132, 377–390.10.1016/j.clay.2016.07.004Suche in Google Scholar
Choulet, F., Buatier, M., Barbanson, L., Guégan, R., and Ennaciri, A. (2016) Zinc-rich clays in supergene non-sulfide zinc deposits. Mineralium Deposita, 51, 467–490.10.1007/s00126-015-0618-8Suche in Google Scholar
Churakov, S.V., and Dähn, R. (2012) Zinc adsorption on clays inferred from atomistic simulations and EXAFS spectroscopy. Environmental Science & Technology, 46, 5713–5719.10.1021/es204423kSuche in Google Scholar PubMed
Cliff, G., and Lorimer, G.W. (1975) The quantitative analysis of thin specimens. Journal of Microscopy, 103, 203–207.10.1111/j.1365-2818.1975.tb03895.xSuche in Google Scholar
Cole, P.M., and Sole, K.C. (2002) Solvent extraction in the primary and secondary processing of zinc. Journal of the South African Institute of Mining and Metallurgy, 2, 451–456.Suche in Google Scholar
Dalheimer, M. (1990) The Zn-Pb-Ag deposits Huaripampa and Carahuacra in the mining district of San Cristobal, central Peru. In L. Fontboté, G.C. Amstutz, M. Cardozo, E. Cedillo, and Frutos J., Eds., Stratabound ore deposits in the Andes, p. 279–291. Springer.10.1007/978-3-642-88282-1_20Suche in Google Scholar
Einsele, G. (2000) Sedimentary Basins, Evolution, Facies and Sediment Budget (2nd ed.), 792 p. Springer-Verlag.10.1007/978-3-662-04029-4Suche in Google Scholar
Emselle, N., McPhail, D.C., and Welch, S.A. (2005) Reliance, Flinders Ranges: mineralogy, geochemistry and zinc dispersion around a nonsulfide orebody. In I.C. Roach, Ed., Proceedings of the CRC LEME Regional Regolith Symposia 2005, p. 86–90. CRC LEME, Bentley, Western Australia.Suche in Google Scholar
Escamilla-Roa, E., Nieto, F., and Sainz-Dìaz, I. (2016) Stability of the hydronium cation in the structure of illite. Clays and Clay Minerals, 64(4), 413–424.10.1346/CCMN.2016.0640406Suche in Google Scholar
Fontboté, L. (1990) Stratabound ore deposits in the Pucará basin: An overview. Society for Geology Applied to Mineral Deposits Special Publication, 8, 253–266.10.1007/978-3-642-88282-1_18Suche in Google Scholar
Fransolet, A.M., and Bourguignon, P. (1975) Données nouvelles sur la fraipontite de Moresnet (Belgique). Bulletin de la Société Française de Minéralogie et de Cristallographie, 98, 235–244.10.3406/bulmi.1975.6994Suche in Google Scholar
Grauby, O., Petit, S., Decarreau, A., and Baronnet, A. (1993) The beidellite-saponite series: an experimental approach. European Journal of Mineralogy, 5, 623–635.10.1127/ejm/5/4/0623Suche in Google Scholar
Gu, X., and Evans, J. (2007) Modelling the absorption of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) adsorption onto Fithian illite. Journal of Colloid and Interface Science, 307, 317–325.10.1016/j.jcis.2006.11.022Suche in Google Scholar PubMed
Gu, X., and Evans, J. (2008) Surface complexation modeling of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) adsorption onto kaolinite. Geochimica et Cosmochimica Acta, 72, 267–276.10.1016/j.gca.2007.09.032Suche in Google Scholar
Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Formoso, M.L.L., Galán, E., Kogure, T., and Stanjek H. (2006a) Summary of recommendations of Nomenclature Committees relevant to clay mineralogy: Report of the association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clays and Clay Minerals, 54, 761–772.10.1346/CCMN.2006.0540610Suche in Google Scholar
Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Formoso, M.L.L., Galán, E., Kogure, T., and Stanjek H. (2006b) Corrigendum 1. Summary of recommendations of Nomenclature Committees relevant to clay mineralogy: Report of the association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clays and Clay Minerals, 55, 646–647.10.1346/CCMN.2006.0540610Suche in Google Scholar
Higashi, S., Miki, K., and Komarneni, S. (2002) Hydrothermal synthesis of Znsmectite. Clays and Clay Minerals, 50, 299–305.10.1346/00098600260358058Suche in Google Scholar
Hitzman, M.W., Reynolds, N.A., Sangster, D.F., Allen, C.R., and Carman, C. (2003) Classification, genesis, and exploration guides for nonsulfide zinc deposits. Economic Geology, 98, 685–714.10.2113/gsecongeo.98.4.685Suche in Google Scholar
INGEMMET (1995) Geologia de Los Cuadrangulos de Bagua Grande, Jumbilla, Lonya Grande, Chachapoyas, Rioja, 250 Leimebamba y Bolivar. Instituto Geologico Minero y Metalurgico, Boletin 56 Serie A, 390 p. Carta Geologica Nacional, Peru.Suche in Google Scholar
Juillot, F., Morin, G., and Ildefonse, P. (2003) Occurrence of Zn/Al hydrotalcite in smelter-impacted soils from northern France: evidence from EXAFS spectroscopy and chemical extractions. American Mineralogist, 88, 509–526.10.2138/am-2003-0405Suche in Google Scholar
Kärner, K. (2006) The metallogenesis of the Skorpion Non-sulphide Zinc Deposit, Namibia. Unpublished Ph.D. thesis, Martin-Luther-Universität Halle-Wittenberg, Germany, 1–133.Suche in Google Scholar
Kaufhold, S., Färber, G., Dohrmann, R., Ufer, K., and Grathoff, G. (2015) Zn-rich smectite from the Silver Coin Mine, Nevada, USA. Clay Minerals, 50, 417–430.10.1180/claymin.2015.050.4.01Suche in Google Scholar
Kloprogge, T., Komarneni, S., and Amonette, J. (1999) Synthesis of smectite clay minerals: A critical review. Clays and Clay Minerals, 47, 529–554.10.1346/CCMN.1999.0470501Suche in Google Scholar
Kobe, H.W. (1977) El Grupo Pucará y su mineralización en el Peru central. Sociedad Geologica Peru Boletin, 55-56, 61–84.Suche in Google Scholar
Kobe, H.W. (1982) El ambiente de la mineralización estratoligada de Zn-Pb-Ag-Ba-Mn-Fe-Cu en los sedimentos de la cuenca occidental del Pucará, Peru central. Sociedad Geologica Peru Boletin, 69, 41–69.Suche in Google Scholar
Kobe, H.W. (1990a) Stratabound Cu-(Ag) deposits in the Permian Red-Bed Formation, Central Peru. In L. Fontboté, G.C. Amstutz, M. Cardozo, and A. Wauschkuhn, Eds., Stratabound Ore Deposits in the Andes, p. 113–122. Springer.10.1007/978-3-642-88282-1_5Suche in Google Scholar
Kobe, H.W. (1990b) Metallogenic evolution of the Yauli dome, Central Peru. In L. Fontboté, G.C. Amstutz, M. Cardozo, and A. Wauschkuhn, Eds., Stratabound Ore Deposits in the Andes, p. 267–278. Springer.10.1007/978-3-642-88282-1_19Suche in Google Scholar
Large, D. (2001) The geology of non-sulphide zinc deposits—An overview. Erzmetall, 54, 264–276.Suche in Google Scholar
Lozano, R.P., Rossi, C., La Iglesia, Á., and Matesanz, E. (2012) Zaccagnaite-3R, a new Zn-Al hydrotalcite polytype from El Soplao cave (Cantabria, Spain). American Mineralogist, 97, 513–523.10.2138/am.2012.3908Suche in Google Scholar
Manceau, A., Lanson, B., Schlegel, M.L., Harge, J.C., Musso, M., Eybert-Berard, L., Hazemann, J.L., Chateigner, D., and Lamble, G.M. (2000) Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy. American Journal of Sciences, 300, 289–343.10.2475/ajs.300.4.289Suche in Google Scholar
Mégard, F. (1984) The Andean Orogenic Period and its major structures in central and northern Peru. Journal of the Geological Society, 141, 893–900.10.1144/gsjgs.141.5.0893Suche in Google Scholar
Mégard, F. (1987) Structures and evolution of the Peruvian Andes. In J. Schaer and J. Rodgers, Eds., The anatomy of mountain ranges, 179–210. Princeton University Press, New Jersey.10.1515/9781400858644.179Suche in Google Scholar
Merlino, S., and Orlandi, P. (2001) Carraraite and zaccagnaite, two new minerals from the Carrara marble quarries: their chemical compositions, physical properties, and structural features. American Mineralogist, 86, 1293–1301.10.2138/am-2001-1017Suche in Google Scholar
Merriman, R.J., and Peacor, D.R. (1999) Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. In M. Frey and D. Robinson, Eds., Low-grade Metamorphism, 12–87. Blackwell Science, Oxford.Suche in Google Scholar
Meunier, A. (2005) Clays, 472 p. Springer-Verlag.Suche in Google Scholar
Meunier, A., and Velde, B. (2004) Illite, 286 p. Springer.10.1007/978-3-662-07850-1Suche in Google Scholar
Mondillo, N., Boni, M., Balassone, G., and Villa, I.M. (2014) The Yanque Prospect (Peru): From Polymetallic Zn-Pb Mineralization to a Nonsulfide Deposit. Economic Geology, 109, 1735–1762.10.2113/econgeo.109.6.1735Suche in Google Scholar
Mondillo, N., Nieto, F., and Balassone, G. (2015) Micro- and nano-characterization of Zn-clays in nonsulfide supergene ores of southern Peru. American Mineralogist, 100, 2484–2496.10.2138/am-2015-5273Suche in Google Scholar
Mondillo, N., Arfè, G., Boni, M., Balassone, G., Boyce, A., Joachimski, M., and Villa, I.M. (2018a) The Cristal Zn prospect (Amazonas region, Northern Peru), Part I: New insights on the sulfide mineralization in the Bongará province. Ore Geology Review, 94, 261–276.10.1016/j.oregeorev.2018.01.021Suche in Google Scholar
Mondillo, N., Arfè, G., Herrington, R., Boni, M., Wilkinson, C., and Mormone, A. (2018b) Enrichments of Ge in supergene settings: Evidence from the Cristal supergene Zn nonsulfide prospect, Bongará district, Northern Peru. Mineralium Deposita, 53(2), 155–169.10.1007/s00126-017-0781-1Suche in Google Scholar
Montoya, V., Baeyens, B., Glaus, M.A., Kupcik, T., Marques Fernandes, M., Van Laer, L., Bruggeman, C., Maes, N., and Schäfer, T. (2018) Sorption of Sr, Co and Zn on illite: Batch experiments and modelling including Co in-diffusion measurements on compacted samples. Geochimica et Cosmochimica Acta, 223, 1–20.10.1016/j.gca.2017.11.027Suche in Google Scholar
Moore, D.M., and Reynolds, R.C.J. (1997) X‑ray Diffraction and the Identification and Analysis of Clay Minerals, 378. Oxford University Press, New York.Suche in Google Scholar
Newman, A.C.D., and Brown, G. (1987) The chemical constitution of clays. In A.C.D. Newman, Ed., Chemistry of Clays and Clay Minerals, 128. Wiley.Suche in Google Scholar
Nieto, F., Ortega-Huertas, M., Peacor, D.R., and Aróstegui, J. (1996) Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian basin. Clays and Clay Minerals, 44, 304–323.10.1346/CCMN.1996.0440302Suche in Google Scholar
Nieto, F., Mellini, F., and Abad, I. (2010) The role of H3O+ in the crystal structure of illite. Clays and Clay Minerals, 58(2), 238–246.10.1346/CCMN.2010.0580208Suche in Google Scholar
Paradis, S., Hannigan, P., and Dewing, K. (2007) Mississippi Valley-type lead-zinc deposits. In W.D. Goodfellow, Ed., Mineral Deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods, 185–203. Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, St. John’s, Newfoundland.Suche in Google Scholar
Pascua, C.S., Ohnuma, M., Matsushita, Y., Tamura, K., Yamada, H., Cuadros, J., and Ye, J. (2010) Synthesis of monodisperse Zn-smectite. Applied Clay Science, 48, 55–59.10.1016/j.clay.2009.12.016Suche in Google Scholar
Petit, S., Righi, D., and Decarreau, A. (2008) Transformation of synthetic Znstevensite to Zn-talc induced by the Hofmann-Klemen effect. Clays and Clay Minerals, 56, 645–654.10.1346/CCMN.2008.0560605Suche in Google Scholar
Reid, C.J. (2001) Stratigraphy and mineralization of the Bongará MVT zinc-lead district, northern Peru, 179. M.Sc. thesis, University of Toronto, Canada.Suche in Google Scholar
Rieder, M., Cavazzini, G., D’Yakonov, Y.S., Kamanetskii, V.A.F., Gottardi, G., Guggenheim, S., Koval, P.K., Muller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.L., Sassi, F.P., Takeda, H., Weiss, Z., and Wones, D.R. (1998) Nomenclature of the micas. Canadian Mineralogist, 36, 1–8.10.1346/CCMN.1998.0460513Suche in Google Scholar
Robert, J.L., and Gaspérin, M. (1985) Crystal structure refinement of hendricksite, A Zn- and Mn-rich trioctahedral potassium mica: A contribution to the crystal chemistry of zinc-bearing minerals. Mineralogy and Petrology, 34, 1–14.10.1007/BF01082453Suche in Google Scholar
Rosas, S., Fontboté, L., and Tankard, A. (2007) Tectonic evolution and paleogeography of the Mesozoic Pucará basin, central Peru. Journal of South American Earth Sciences, 24, 1–24.10.1016/j.jsames.2007.03.002Suche in Google Scholar
Ross, C. S. (1946) Sauconite—a clay mineral of the Montmorillonite group. American Mineralogist, 31, 411–424.Suche in Google Scholar
Rule, A.C., and Radke, F. (1988) Baileychlore, the Zn end member of the trioctahedral chlorite series. American Mineralogist, 73, 135–139.Suche in Google Scholar
Sharygin, V.V. (2015) Zincian micas from peralkaline phonolites of the Oktyabrsky massif, Azov Sea region, Ukrainian Shield. European Journal of Mineralogy, 4, 521–533.10.1127/ejm/2015/0027-2460Suche in Google Scholar
Srivastava, P., Singh, B., and Angove, M. (2005) Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science, 290, 28–38.10.1016/j.jcis.2005.04.036Suche in Google Scholar PubMed
Środoń, J., and Eberl, D.D. (1984) Illite. In S.W. Bailey, Ed., Micas, vol. 13, p. 495–544. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.10.1515/9781501508820-016Suche in Google Scholar
Vázquez, M., Nieto, F., Morata, D., Droguet, B., Cariili-Rosua, F.J., and Morales, S. (2014) Evolution of clay mineral assemblages in the Tinguiririca geothermal field, Andean Cordillera of central Chile: an XRD and HRTEM-AEM study. Journal of Volcanology and Geothermal Research, 282, 43–59.10.1016/j.jvolgeores.2014.05.022Suche in Google Scholar
Vázquez, M., Bauluz, B., Nieto, F., and Morata, D. (2016) Illitization sequence controller by temperature in volcanic geothermal system: The Tinguiririnca geothermal field, Andean Coridllera, Central Chile. Applied Clay Science, 134, 221–234.10.1016/j.clay.2016.04.011Suche in Google Scholar
Whitney, D.L., and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.10.2138/am.2010.3371Suche in Google Scholar
Wright, C. (2010) Rio Cristal Resources Corporation Bongará Zinc Project: Technical Report NI 43-101, 102. Canada, Rio Cristal Resources Corporation and AMEC, Peru.Suche in Google Scholar
Yamada, H.,Yoshioka, K.,Tamura, K., Fujii, K., and Nakazawa, H. (1999) Compositional gap in dioctahedral-trioctahedral smectite system: beidellite-saponite pseudo-binary join. Clays and Clay Minerals, 47, 803–810.10.1346/CCMN.1999.0470616Suche in Google Scholar
Zhang, C., He, H., Tao, Q., Ji, S., Li, S., Ma, L., Su, X., and Zhu, J. (2017) Metal occupancy and its influence on thermal stability of synthetic saponites. Applied Clay Science, 135, 282–288.10.1016/j.clay.2016.10.006Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Outlooks in Earth and Planetary Materials
- Are quasicrystals really so rare in the Universe?
- Reaction between Cu-bearing minerals and hydrothermal fluids at 800 °C and 200 MPa: Constraints from synthetic fluid inclusions
- Evaluation and application of the quartz-inclusions-in-epidote mineral barometer
- Let there be water: How hydration/dehydration reactions accompany key Earth and life processes
- Origin of corundum within anorthite megacrysts from anorthositic amphibolites,Granulite Terrane, Southern India
- Raman spectroscopy study of manganese oxides: Tunnel structures
- Experimental constraints on the partial melting of sediment-metasomatized lithospheric mantle in subduction zones
- Interlayer energy of pyrophyllite: Implications for macroscopic friction
- Thermodynamic and thermoelastic properties of wurtzite-ZnS by density functional theory
- The nature of Zn-phyllosilicates in the nonsulfide Mina Grande and Cristal zinc deposits (Bongará District, Northern Peru): The TEM-HRTEM and AEM perspective
- Orthovanadate wakefieldite-(Ce) in symplectites replacing vanadium-bearing omphacite in the ultra-oxidized manganese deposit of Praborna (Aosta Valley, Western Italian Alps)
- A simple and effective capsule sealing technique for hydrothermal experiments
- Metamorphic amphiboles in the Ironwood Iron-Formation, Gogebic Iron Range, Wisconsin: Implications for potential resource development
- Letter
- The chlorine-isotopic composition of lunar KREEP from magnesian-suite troctolite 76535
- New Mineral Names
Artikel in diesem Heft
- Outlooks in Earth and Planetary Materials
- Are quasicrystals really so rare in the Universe?
- Reaction between Cu-bearing minerals and hydrothermal fluids at 800 °C and 200 MPa: Constraints from synthetic fluid inclusions
- Evaluation and application of the quartz-inclusions-in-epidote mineral barometer
- Let there be water: How hydration/dehydration reactions accompany key Earth and life processes
- Origin of corundum within anorthite megacrysts from anorthositic amphibolites,Granulite Terrane, Southern India
- Raman spectroscopy study of manganese oxides: Tunnel structures
- Experimental constraints on the partial melting of sediment-metasomatized lithospheric mantle in subduction zones
- Interlayer energy of pyrophyllite: Implications for macroscopic friction
- Thermodynamic and thermoelastic properties of wurtzite-ZnS by density functional theory
- The nature of Zn-phyllosilicates in the nonsulfide Mina Grande and Cristal zinc deposits (Bongará District, Northern Peru): The TEM-HRTEM and AEM perspective
- Orthovanadate wakefieldite-(Ce) in symplectites replacing vanadium-bearing omphacite in the ultra-oxidized manganese deposit of Praborna (Aosta Valley, Western Italian Alps)
- A simple and effective capsule sealing technique for hydrothermal experiments
- Metamorphic amphiboles in the Ironwood Iron-Formation, Gogebic Iron Range, Wisconsin: Implications for potential resource development
- Letter
- The chlorine-isotopic composition of lunar KREEP from magnesian-suite troctolite 76535
- New Mineral Names