Startseite Orthovanadate wakefieldite-(Ce) in symplectites replacing vanadium-bearing omphacite in the ultra-oxidized manganese deposit of Praborna (Aosta Valley, Western Italian Alps)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Orthovanadate wakefieldite-(Ce) in symplectites replacing vanadium-bearing omphacite in the ultra-oxidized manganese deposit of Praborna (Aosta Valley, Western Italian Alps)

  • Simone Tumiati ORCID logo EMAIL logo , Marco Merlini , Gaston Godard , Michael Hanfland und Patrizia Fumagalli ORCID logo
Veröffentlicht/Copyright: 11. August 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Because of their unique structure and properties, rare-earth (REE) orthovanadates have been extensively employed for decades in advanced ceramics, in particular in the laser industry in replacement of Nd: YAG. A Ca-bearing REE orthovanadate with the empirical formula (Ce0.279Ca0.271Y0.267Gd0.057 Nd0.055Dy0.032Sm0.027La0.020Th0.027Sr0.002)(V0.9085+Cr0.0673+Fe0.0173+As0.0055+)O4nH2Ohas been found in metacherts from Praborna (Italian Alps) as micrometer-sized euhedral crystals in clinopyroxene + plagioclase symplectites replacing eclogite-facies vanadium-bearing omphacite (Aegirine55–48Jadeite42–33Diopside10–8 with V2O3 ≤ 1.39 wt%). We applied the synchrotron radiation, single crystal, micro-diffraction technique, recently optimized at ID09A beamline (ESRF, France), to determine the crystal structure of this mineral. It is tetragonal and isostructural with zircon, with a = 7.2233(12) Å, c = 6.3949(18) Å, V = 333.66(13) Å3, Z = 4, space group I41/amd, and it has been therefore identified as Ca- and Y-bearing wakefieldite-(Ce) (ideally CeV5+O4). Cell parameters are in agreement with those of synthetic Ce0.7Ca0.3VO4. Raman spectra of the studied wakefieldite-(Ce) are comparable with natural and synthetic wakefieldite-(Ce) spectra and revealed the presence of OH groups and/or water of hydration, which is also suggested by the low totals in microprobe analyses. Mass balance indicates that wakefieldite-(Ce) is a by-product of the omphacite breakdown; omphacite and Mn-rich epidote, a minor reactant, provided vanadium and REE, respectively. Petrological observations and thermodynamic modeling suggest that the mineral, coexisting with hematite, Mn-rich epidote, and braunite, formed during retrogression to greenschist-facies conditions at ultra-oxidized conditions (ᐃFMQ ≥ +16 log units), which are often observed in Mn-oxide ores. Wakefieldite is an efective scavenger of REE in oxidized geological environments at P-T conditions that range from sedimentary to medium-grade metamorphic settings, even where the REE bulk concentration is negligible. Its rarity reflects both the overall low abundance of vanadium and the need for ultra-oxidized conditions that are rarely achieved in metamorphic rocks, where REE phosphates (i.e., monazite, xenotime) are commonly found instead.

Acknowledgments

M. Fialin at an early stage of the study and A. Risplendente are acknowledged for their help at the electron microprobes of Paris and Milan, respectively. E. Perseil is thanked for donating sample SM96-2 to S.T. The authors are indebted to two anonymous reviewers for their useful suggestions. Suggestions by the Associate Editor Jennifer Kung also contributed to a significant improvement of the paper.

  1. Funding

    Italian Ministry of Education, Universities and Research (MIUR)—Excellent Departments Project.

References cited

Angiboust, S., Agard, P., Jolivet, L., and Beyssac, O. (2009) The Zermatt-Saas ophiolite: the largest (60-km wide) and deepest (c 70–80 km) continuous slice of oceanic lithosphere detached from a subduction zone? Terra Nova, 21, 171–180.10.1111/j.1365-3121.2009.00870.xSuche in Google Scholar

Baudracco-Gritti, C., Quartieri, S., Vezzalini, G., Permingeat, F., Pillard, F., and Rinaldi, R. (1987) A lead-free wakefieldite-(Ce): New data on the mineral species corresponding to cerium orthovanadate. Bulletin de Minéralogie, 110, 657–663.10.3406/bulmi.1987.8010Suche in Google Scholar

Binks, W. (1926) The crystalline structure of zircon. Mineralogical Magazine and Journal of the Mineralogical Society, 21, 176–187.10.1180/minmag.1926.021.115.06Suche in Google Scholar

Brugger, J., Gieré, R., Graeser, S., and Meisser, N. (1997) The crystal chemistry of roméite. Contributions to Mineralogy and Petrology, 127, 136–146.10.1007/s004100050271Suche in Google Scholar

Cadoni, M., Ciriotti, M.E., and Ferraris, G. (2011) Wakefieldite-(Y) from Montaldo di Mondovì (Italy): new data and crystal structure. Rendiconti Lincei. Scienze Fisiche e Naturali, 22, 307–314.10.1007/s12210-011-0134-4Suche in Google Scholar

Cenki-Tok, B., Ragu, A., Armbruster, T., Chopin, C., and Medenbach, O. (2006) New Mn-and rare-earth-rich epidote-group minerals in metacherts: manganiandrosite-(Ce) and vanadoandrosite-(Ce). European Journal of Mineralogy, 18, 569–582.10.1127/0935-1221/2006/0018-0569Suche in Google Scholar

Chakoumakos, B. C., Abraham, M.M., and Boatner, L.A. (1994) Crystal structure refinements of zircon-type MVO4 (M = Sc, Y, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu). Journal of Solid State Chemistry, 109, 197–202. https://doi.org/10.1006/jssc.1994.109110.1006/jssc.1994.1091Suche in Google Scholar

Chang, M., Wang, M., Chen, Y., Shu, M., Zhao, Y., Ding, B., Hou, Z., and Lin, J. (2019) Self-assembled CeVO4Ag nanohybrid as photoconversion agents with enhanced solar-driven photocatalysis and NIR-responsive photothermal/photodynamic synergistic therapy performance. Nanoscale, 11, 10,129–10,136.Suche in Google Scholar

Connolly, J.A.D. (2005) Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters, 236, 524–541.10.1016/j.epsl.2005.04.033Suche in Google Scholar

Deliens, M., and Piret, P. (1977) La kusuïte (Ce3+Pb2+Pb4+VO4 nouveau mineral. Bulletin de la Société Française de Minéralogie et de Cristallographie, 100, 39–41.10.3406/bulmi.1977.7116Suche in Google Scholar

Dubrovinsky, L., Boffa-Ballaran, T., Glazyrin, K., Kurnosov, A., Frost, D., Merlini, M., Hanfland, M., Prakapenka, V.B., Schouwink, P., Pippinger, T., and others. (2010) Single-crystal X‑ray diffraction at megabar pressures and temperatures of thousands of degrees. High Pressure Research, 30, 620–633.10.1080/08957959.2010.534092Suche in Google Scholar

Frost, R.L., Henry, D.A., Weier, M.L., and Martens, W. (2006) Raman spectroscopy of three polymorphs of BiVO4 Clinobisvanite, dreyerite and pucherite, with comparisons to (VO43- bearing minerals: namibite, pottsite and schumacherite. Journal of Raman Spectroscopy, 37, 722–732.10.1002/jrs.1499Suche in Google Scholar

Godard, G. (2009) Two orogenic cycles recorded in eclogite-facies gneiss from the Southern Armorican Massif (France). European Journal of Mineralogy, 21, 1173–1190.10.1127/0935-1221/2009/0021-1984Suche in Google Scholar

Gröbner, J., Kolitsch, U., and Wesiger, J. (2011) New finds of vanadate and rare-earth minerals from the manganese mine Ilfeld, Harz. Mineralien-Welt, 22, 41–49.Suche in Google Scholar

Harlow, G.E., and Brown, G.E.J. (1980) Low albite: an X‑ray and neutron diffraction study. American Mineralogist, 65, 986–995.Suche in Google Scholar

Hess, F.L. (1925) New and known minerals from the Utah-Colorado carnotite region. U.S. Geological Survey Bulletin, 750, 63–78.Suche in Google Scholar

Hess, F.L., and Schaller, W.T. (1914) Pintadoite and uvanite, two new vanadium minerals from Utah, a preliminary note. Journal of the Washington Academy of Sciences, 4, 576–579.Suche in Google Scholar

Holland, T. J.B. (1980) The reaction albite = jadeite + quartz determined experimentally in the range 600–1200°C. American Mineralogist, 65, 129–134.Suche in Google Scholar

Holland, T., and Powell, R. (1996) Thermodynamics of order-disorder in minerals: I. Symmetric formalism applied to minerals of fixed composition. American Mineralogist, 81, 1413–1424.10.2138/am-1996-11-1214Suche in Google Scholar

Holland, T., and Powell, R. (1998) An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, 309–343.10.1111/j.1525-1314.1998.00140.xSuche in Google Scholar

Howard, D.G., Tschernich, R.W., and Klein, G.L. (1995) Occurrence of wakefieldite-(Ce) with zeolites at Yellow Lake, British Columbia, Canada. Neues Jahrbuch für Geologie und Mineralogie Monatshefte, 1995, 127–132.Suche in Google Scholar

Kim, M., Kang, Y., Cha, W., and Lee, H. (2012) Phase equilibria in the Mn–V–O system near MnO–V2O3 isopleth. Journal of the American Ceramic Society, 95, 2059–2064.10.1111/j.1551-2916.2012.05193.xSuche in Google Scholar

Lavina, B., Carbonin, S., Russo, U., and Tumiati, S. (2006) The crystal structure of dissakisite-(La) and structural variations after annealing of radiation damage. American Mineralogist, 91, 104–110.10.2138/am.2006.1721Suche in Google Scholar

Manjón, F. J., Rodríguez-Hernández, P., Muñoz, A., Romero, A.H., Errandonea, D., and Syassen, K. (2010) Lattice dynamics of YVO4 at high pressures. Physical Review B—Condensed Matter and Materials Physics, 81, 1–11.10.1103/PhysRevB.81.075202Suche in Google Scholar

Martin, S., Rebay, G., Kienast, J.R., and Mével, C. (2008) An eclogitised oceanic palaeo-hydrothermal field from the St. Marcel Valley (Italian Western Alps). Ofioliti, 33, 49–63.Suche in Google Scholar

Martínez-Huerta, M.V., Coronado, J.M., Fernández-García, M., Iglesias-Juez, A., Deo, G., Fierro, J.L.G., and Bañares, M.A. (2004) Nature of the vanadia-ceria interface in V5+CeO2 catalysts and its relevance for the solid-state reaction toward CeVO4 and catalytic properties. Journal of Catalysis, 225, 240–248.10.1016/j.jcat.2004.04.005Suche in Google Scholar

Merlini, M., Hanfland, M., and Crichton, W.A. (2012) CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: Possible host structures for carbon in the Earth’s mantle. Earth and Planetary Science Letters, 333-334, 265–271.10.1016/j.epsl.2012.04.036Suche in Google Scholar

Miles, N.M., Hogarth, D.D., and Russell, D. S. (1971) Wakefieldite, yttrium vanadate, a new mineral from Quebec. American Mineralogist, 56, 395–410.Suche in Google Scholar

Moriyama, T., Miyawaki, R., Yokoyama, K., Matsubara, S., Hirano, H., Murakami, H., and Watanabe, Y. (2011) Wakefieldite-(Nd), a new neodymium vanadate mineral in the Arase Stratiform Ferromanganese Deposit, Kochi Prefecture, Japan. Resource Geology, 61, 101–110.10.1111/j.1751-3928.2010.00151.xSuche in Google Scholar

O’Connor, J.R. (1966) Unusual crystal-field energy levels and efficient laser properties of YVO4Nd. Applied Physics Letters, 9, 407–409.10.1063/1.1754631Suche in Google Scholar

Oszlányi, G., and Sütő, A. (2004) Ab initio structure solution by charge flipping. Acta Crystallographica, A60, 134–141.10.1107/S0108767303027569Suche in Google Scholar PubMed

Palatinus, L., and Chapuis, G. (2007) SUPERFLIP—a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 786–790.10.1107/S0021889807029238Suche in Google Scholar

Panchal, V., López-Moreno, S., Santamaría-Pérez, D., Errandonea, D., Manjón, F.J., Rodríguez-Hernandez, P., Muñoz, A., Achary, S.N., and Tyagi, A.K. (2011) Zircon to monazite phase transition in CeVO4 X‑ray diffraction and Raman-scattering measurements. Physical Review B—Condensed Matter and Materials Physics, 84, 1–12.10.1103/PhysRevB.84.024111Suche in Google Scholar

Petit, C.T.G., Lan, R., Cowin, P.I., Kraft, A., and Tao, S. (2011) Structure, conductivity and redox stability of solid solution Ce1–xCaxVO4 (0 ≤ x ≤ 0.4125). Journal of Materials Science, 46, 316–326.10.1007/s10853-010-4812-xSuche in Google Scholar

Petříček, V., Dušek, M., and Palatinus, L. (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie—Crystalline Materials, 229, 345–352.10.1515/zkri-2014-1737Suche in Google Scholar

Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) The structure of zircon: A comparison with garnet. American Mineralogist, 56, 782–790.Suche in Google Scholar

Ryu, M.K., Choi, J.G., Kim, G.H., Kojima, S., Takashige, M., and Jang, M.S. (2006) Raman Scattering Study in Ca3V2O8 Ferroelectrics, 332, 1–5.10.1080/00150190500308538Suche in Google Scholar

Sharma, A., Varshney, M., Chae, K.H., and Won, S.O. (2018) Electronic structure and luminescence assets in white-light emitting Ca2V2O7 Sr2V2O7 and Ba2V2O7 pyro-vanadates: X‑ray absorption spectroscopy investigations. RSC Advances, 8, 26423–26431.10.1039/C8RA03347ASuche in Google Scholar PubMed PubMed Central

Toffolo, L., Nimis, P., Martin, S., Tumiati, S., and Bach, W. (2017) The Cogne magnetite deposit (Western Alps, Italy): A Late Jurassic seafloor ultramafic-hosted hydrothermal system? Ore Geology Reviews, 83, 103–126.10.1016/j.oregeorev.2016.11.030Suche in Google Scholar

Tumiati, S., and Malaspina, N. (2019) Redox processes and the role of carbon-bearing volatiles from the slab–mantle interface to the mantle wedge. Journal of the Geological Society, 176, 388–397.10.1144/jgs2018-046Suche in Google Scholar

Tumiati, S., Godard, G., Martin, S., Nimis, P., Mair, V., and Boyer, B. (2005) Dissakisite-(La) from the Ulten zone peridotite (Italian Eastern Alps): A new end-member of the epidote group. American Mineralogist, 90, 1177–1185.10.2138/am.2005.1710Suche in Google Scholar

Tumiati, S., Martin, S., and Godard, G. (2010) Hydrothermal origin of manganese in the high-pressure ophiolite metasediments of Praborna ore deposit (Aosta Valley, Western Alps). European Journal of Mineralogy, 22, 577–594.10.1127/0935-1221/2010/0022-2035Suche in Google Scholar

Tumiati, S., Godard, G., Martin, S., Malaspina, N., and Poli, S. (2015) Ultra-oxidized rocks in subduction mélanges? Decoupling between oxygen fugacity and oxygen availability in a Mn-rich metasomatic environment. Lithos, 226, 116–130.10.1016/j.lithos.2014.12.008Suche in Google Scholar

Walter, F., Auer, C., Bojar, H., Friebe, G., Jakely, D., Kolitsch, U., Kiseljak, R., Knobloch, G., Lóránth, C., Löffler, E., and others (2018) Neue Mineralfunde aus Österreich LXVII. Carinthia II, 208, 185–254.Suche in Google Scholar

Weast, R.C. (1984) CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton, Florida.Suche in Google Scholar

Whitney, D.L., and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.10.2138/am.2010.3371Suche in Google Scholar

Witzke, T., Kolitsch, U., Warnsloh, J.M., and Göske, J. (2008) Wakefieldite-(La), LaVO4 a new mineral species from the Glücksstern Mine, Friedrichroda, Thuringia, Germany. European Journal of Mineralogy, 20, 1135–1139.10.1127/0935-1221/2009/0021-1875Suche in Google Scholar

Yu, P., and O’Keefe, T.J. (2006) The phase stability of cerium species in aqueous systems. Journal of the Electrochemical Society, 153, C80.10.1149/1.2130574Suche in Google Scholar

Zhou, L., Mavrogenes, J., Spandler, C., and Li, H. (2016) A synthetic fluid inclusion study of the solubility of monazite-(La) and xenotime-(Y) in H2O-Na-K-Cl-F-CO2 fluids at 800°C and 0.5 GPa. Chemical Geology, 442, 121–129.10.1016/j.chemgeo.2016.09.010Suche in Google Scholar

Received: 2019-07-19
Accepted: 2020-01-29
Published Online: 2020-08-11
Published in Print: 2020-08-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Outlooks in Earth and Planetary Materials
  2. Are quasicrystals really so rare in the Universe?
  3. Reaction between Cu-bearing minerals and hydrothermal fluids at 800 °C and 200 MPa: Constraints from synthetic fluid inclusions
  4. Evaluation and application of the quartz-inclusions-in-epidote mineral barometer
  5. Let there be water: How hydration/dehydration reactions accompany key Earth and life processes
  6. Origin of corundum within anorthite megacrysts from anorthositic amphibolites,Granulite Terrane, Southern India
  7. Raman spectroscopy study of manganese oxides: Tunnel structures
  8. Experimental constraints on the partial melting of sediment-metasomatized lithospheric mantle in subduction zones
  9. Interlayer energy of pyrophyllite: Implications for macroscopic friction
  10. Thermodynamic and thermoelastic properties of wurtzite-ZnS by density functional theory
  11. The nature of Zn-phyllosilicates in the nonsulfide Mina Grande and Cristal zinc deposits (Bongará District, Northern Peru): The TEM-HRTEM and AEM perspective
  12. Orthovanadate wakefieldite-(Ce) in symplectites replacing vanadium-bearing omphacite in the ultra-oxidized manganese deposit of Praborna (Aosta Valley, Western Italian Alps)
  13. A simple and effective capsule sealing technique for hydrothermal experiments
  14. Metamorphic amphiboles in the Ironwood Iron-Formation, Gogebic Iron Range, Wisconsin: Implications for potential resource development
  15. Letter
  16. The chlorine-isotopic composition of lunar KREEP from magnesian-suite troctolite 76535
  17. New Mineral Names
Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2020-7219/html
Button zum nach oben scrollen