Home The nature of Zn-phyllosilicates in the nonsulfide Mina Grande and Cristal zinc deposits (Bongará District, Northern Peru): The TEM-HRTEM and AEM perspective
Article
Licensed
Unlicensed Requires Authentication

The nature of Zn-phyllosilicates in the nonsulfide Mina Grande and Cristal zinc deposits (Bongará District, Northern Peru): The TEM-HRTEM and AEM perspective

  • Giuseppina Balassone EMAIL logo , Valentina Scognamiglio , Fernando Nieto , Nicola Mondillo , Maria Boni , Piergiulio Cappelletti and Giuseppe Arfè
Published/Copyright: August 11, 2020
Become an author with De Gruyter Brill

Abstract

Zn-phyllosilicates are common minerals in nonsulfide Zn deposits and can give crucial information about the genesis of these oxidized mineralizations. They seldom represent the prevailing economic species but might have a significant impact on mineral processing. This study has been carried out on the Mina Grande and Cristal Zn-sulfide/nonsulfide deposits, which occur in the Bongará district (Amazonas region, northern Peru). The Cristal and Mina Grande orebodies are hosted by the sedimentary (prevailingly carbonate) successions of the Pucará Group (Condorsinga formation, Lower Jurassic), in an area affected by Neogene tectonics and characterized by Late Miocene and Pliocene-Early Pleistocene uplift phases (Andean and Quechua tectonic pulses). The Cristal deposit consists of both sulfide (sphalerite with minor pyrite and galena) and nonsulfide concentrations. The nonsulfides consists of smithsonite, hemimorphite, hydrozincite, chalcophanite, goethite, and greenockite, locally associated with Zn-bearing phyllosilicates. The Mina Grande deposit consists almost exclusively of Zn-oxidized minerals in limestone host rocks. The nonsulfides association consists of hydrozincite, hemimorphite, smithsonite, fraipontite, and Fe-(hydr)oxides, also containing a clayey fraction. The study deals with TEM-HRTEM and AEM investigations on clayey materials, to determine their crystal-chemical features and the origin of the complex Zn-clays-bearing parageneses. In both deposits, Zn-bearing illites (1Md and 2M polytypes) and I/S clay minerals (I3) are the main detected phases, with few compositions close to (Zn-bearing) muscovite. In the clayey fraction at Mina Grande, fraipontite, a Zn-bearing mica called K-deficient hendricksite, and (Zn-bearing) kaolinite also occur. Zn-illites and smectites (always containing Zn in variable amounts) characterize the mineral association at Cristal. The investigated compositional gap between di- and tri-octahedral Zn-phyllosilicates gives indications on the genetic relationships between them and advances on the knowledge of these species. The present work gives an insight into the Zn-bearing phyllosilicates systems by determining the amount/mode of metal incorporation in their lattices and understanding the relationships of natural occurring clay-rich complex associations, which can act as models for possible synthetic counterparts.

Acknowledgments

The authors are indebted to M.M. Abad-Ortega and C. de la Prada Sánchez (CIC, Granada) for the skillful support during TEM analyses, and to R. de Gennaro (DiSTAR, Napoli) for his invaluable help during SEM analyses. The authors thank two anonymous Referees, who provided constructive reviews that greatly improved the manuscript, and the Associate Editor Andrew E. Madden for handling the manuscript.

  1. Funding

    This work was partly supported by Departmental funds 2017 (University of Napoli Federico II) granted to G. Balassone and by the research projects CGL2016-75679-P from the Spanish Government and the Research Group RNM-179 of the Junta de Andalucìa.

References cited

Abad, M.M., and Nieto, F. (2003) Quantitative EDX analysis in TEM. Practical development, limitations and standards. In A. Mendez-Vilas, Ed., Science, Technology and Education of Microscopy: An Overview, p. 687–694. Badajoz, Spain, Formatex.Search in Google Scholar

Arfè, G. (2018) Genesis of supergene nonsulfide zinc minerallizations in the Bongará (Peru) and Skorpion-Rosh Pinah (Namibia) areas, 266 p. Ph.D. thesis, Università Federico II, Napoli ItalySearch in Google Scholar

Arfè, G., Boni, M., Mondillo, N., Aiello, R., and Balassone, G. (2016) Supergene alteration in the Capricornio Au-Ag epithermal vein system, Antofagasta Region, Chile. Canadian Mineralogist, 54, 1–25.10.3749/canmin.1600012Search in Google Scholar

Arfè, G., Mondillo, N., Balassone, G., Boni, M., Cappelletti, P., and Di Palma, T. (2017a) Identification of Zn-micas and clays from the Cristal and Mina Grande zinc deposits (Bongará Province, Amazonas Region, Northern Peru). Minerals, 7(11), 214, 1–17.10.3390/min7110214Search in Google Scholar

Arfè, G., Mondillo, N., Boni, M., Balassone, G., Joachimski, M., Mormone, A., and Di Palma, T. (2017b) The karst-hosted Mina Grande nonsulfide zinc deposit, Bongará district (Amazonas region, Peru). Economic Geology, 112, 1089–1110.10.5382/econgeo.2017.4503Search in Google Scholar

Arfè, G., Mondillo, N., Boni, M., Joachimski, M., Balassone, G., Mormone, A., Santoro, L., and Castro Medrano, E. (2018) The Cristal Zn prospect (Amazonas region, Northern Peru). Part II: An example of supergene zinc enrichments in tropical areas. Ore Geology Review, 94, 1076–1105.10.1016/j.oregeorev.2017.11.022Search in Google Scholar

Balassone, G., Nieto, F., Arfè, G., Boni, M., and Mondillo, N. (2017) Zn-clay minerals in the Skorpion Zn nonsulfide deposit (Namibia): Identification and genetic clues revealed by HRTEM and AEM study. Applied Clay Sciences, 150, 309–322.10.1016/j.clay.2017.09.034Search in Google Scholar

Bauluz, B., Peacor, D.R., and González-López, J.M. (2000) Transmission electron microscopy study of illitization in pelites from the Iberian Range, Spain: layer-by-layer replacement? Clays and Clay Minerals, 48, 374–384.10.1346/CCMN.2000.0480308Search in Google Scholar

Benavides-Cáceres, V. (1999) Orogenic evolution of the Peruvian Andes: the Andean Cycle. Society of Economic Geologists Special Publication, 7, 61–107.Search in Google Scholar

Boni, M. (2005) The geology and mineralogy of nonsulfide zinc ore deposits. In T. Fujisawa, Ed., Proceedings of Lead & Zinc ‘05 Kyoto, p. 1299–1314. Mining and Materials Processing Institute, Japan.Search in Google Scholar

Boni, M., and Mondillo, N. (2015) The “Calamines” and the “Others”: the great family of supergene nonsulfide zinc ores. Ore Geology Reviews, 67, 208–233.10.1016/j.oregeorev.2014.10.025Search in Google Scholar

Boni, M., Balassone, G., Arseneau, V., and Schmidt, P. (2009a) The nonsulfide zinc deposit at Accha (Southern Peru): geological and mineralogical characterization. Economic Geology, 104, 267–289.10.2113/gsecongeo.104.2.267Search in Google Scholar

Boni, M., Schmidt, P.R., De Wet, J.R., Singleton, J.D., Balassone, G., and Mondillo, N. (2009b) Mineralogical signature of nonsulfide zinc ores at Accha (Peru): A key for recovery. International Journal of Mineral Processing, 93, 267–277.10.1016/j.minpro.2009.10.003Search in Google Scholar

Borg, G., Kärner, K., Buxton, M., Armstrong, R., and Merwe, S.W. (2003) Geology of the Skorpion supergene Zn deposit, southern Namibia. Economic Geology, 98, 749–771.10.2113/gsecongeo.98.4.749Search in Google Scholar

Brigatti, M.F., and Guggenheim, S. (2002) Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models. Reviews in Mineralogy and Geochemistry, 46(1), 1–97.10.2138/rmg.2002.46.01Search in Google Scholar

Brophy, J.A. (2012) Rio Cristal Resources Corporation Bongará zinc project. Technical Report NI 43-101, 104. Canada, Rio Cristal Resources.Search in Google Scholar

Buatier, M., Choulet, F., Petit, S., Chassagnon, R., and Vennemann, T. (2016) Nature and origin of natural Zn clay minerals from the Bou Arhous Zn ore deposit. Evidence from electron microscopy (SEM-TEM) and stable isotope compositions (H and O). Applied Clay Sciences, 132, 377–390.10.1016/j.clay.2016.07.004Search in Google Scholar

Choulet, F., Buatier, M., Barbanson, L., Guégan, R., and Ennaciri, A. (2016) Zinc-rich clays in supergene non-sulfide zinc deposits. Mineralium Deposita, 51, 467–490.10.1007/s00126-015-0618-8Search in Google Scholar

Churakov, S.V., and Dähn, R. (2012) Zinc adsorption on clays inferred from atomistic simulations and EXAFS spectroscopy. Environmental Science & Technology, 46, 5713–5719.10.1021/es204423kSearch in Google Scholar PubMed

Cliff, G., and Lorimer, G.W. (1975) The quantitative analysis of thin specimens. Journal of Microscopy, 103, 203–207.10.1111/j.1365-2818.1975.tb03895.xSearch in Google Scholar

Cole, P.M., and Sole, K.C. (2002) Solvent extraction in the primary and secondary processing of zinc. Journal of the South African Institute of Mining and Metallurgy, 2, 451–456.Search in Google Scholar

Dalheimer, M. (1990) The Zn-Pb-Ag deposits Huaripampa and Carahuacra in the mining district of San Cristobal, central Peru. In L. Fontboté, G.C. Amstutz, M. Cardozo, E. Cedillo, and Frutos J., Eds., Stratabound ore deposits in the Andes, p. 279–291. Springer.10.1007/978-3-642-88282-1_20Search in Google Scholar

Einsele, G. (2000) Sedimentary Basins, Evolution, Facies and Sediment Budget (2nd ed.), 792 p. Springer-Verlag.10.1007/978-3-662-04029-4Search in Google Scholar

Emselle, N., McPhail, D.C., and Welch, S.A. (2005) Reliance, Flinders Ranges: mineralogy, geochemistry and zinc dispersion around a nonsulfide orebody. In I.C. Roach, Ed., Proceedings of the CRC LEME Regional Regolith Symposia 2005, p. 86–90. CRC LEME, Bentley, Western Australia.Search in Google Scholar

Escamilla-Roa, E., Nieto, F., and Sainz-Dìaz, I. (2016) Stability of the hydronium cation in the structure of illite. Clays and Clay Minerals, 64(4), 413–424.10.1346/CCMN.2016.0640406Search in Google Scholar

Fontboté, L. (1990) Stratabound ore deposits in the Pucará basin: An overview. Society for Geology Applied to Mineral Deposits Special Publication, 8, 253–266.10.1007/978-3-642-88282-1_18Search in Google Scholar

Fransolet, A.M., and Bourguignon, P. (1975) Données nouvelles sur la fraipontite de Moresnet (Belgique). Bulletin de la Société Française de Minéralogie et de Cristallographie, 98, 235–244.10.3406/bulmi.1975.6994Search in Google Scholar

Grauby, O., Petit, S., Decarreau, A., and Baronnet, A. (1993) The beidellite-saponite series: an experimental approach. European Journal of Mineralogy, 5, 623–635.10.1127/ejm/5/4/0623Search in Google Scholar

Gu, X., and Evans, J. (2007) Modelling the absorption of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) adsorption onto Fithian illite. Journal of Colloid and Interface Science, 307, 317–325.10.1016/j.jcis.2006.11.022Search in Google Scholar PubMed

Gu, X., and Evans, J. (2008) Surface complexation modeling of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) adsorption onto kaolinite. Geochimica et Cosmochimica Acta, 72, 267–276.10.1016/j.gca.2007.09.032Search in Google Scholar

Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Formoso, M.L.L., Galán, E., Kogure, T., and Stanjek H. (2006a) Summary of recommendations of Nomenclature Committees relevant to clay mineralogy: Report of the association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clays and Clay Minerals, 54, 761–772.10.1346/CCMN.2006.0540610Search in Google Scholar

Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Formoso, M.L.L., Galán, E., Kogure, T., and Stanjek H. (2006b) Corrigendum 1. Summary of recommendations of Nomenclature Committees relevant to clay mineralogy: Report of the association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clays and Clay Minerals, 55, 646–647.10.1346/CCMN.2006.0540610Search in Google Scholar

Higashi, S., Miki, K., and Komarneni, S. (2002) Hydrothermal synthesis of Znsmectite. Clays and Clay Minerals, 50, 299–305.10.1346/00098600260358058Search in Google Scholar

Hitzman, M.W., Reynolds, N.A., Sangster, D.F., Allen, C.R., and Carman, C. (2003) Classification, genesis, and exploration guides for nonsulfide zinc deposits. Economic Geology, 98, 685–714.10.2113/gsecongeo.98.4.685Search in Google Scholar

INGEMMET (1995) Geologia de Los Cuadrangulos de Bagua Grande, Jumbilla, Lonya Grande, Chachapoyas, Rioja, 250 Leimebamba y Bolivar. Instituto Geologico Minero y Metalurgico, Boletin 56 Serie A, 390 p. Carta Geologica Nacional, Peru.Search in Google Scholar

Juillot, F., Morin, G., and Ildefonse, P. (2003) Occurrence of Zn/Al hydrotalcite in smelter-impacted soils from northern France: evidence from EXAFS spectroscopy and chemical extractions. American Mineralogist, 88, 509–526.10.2138/am-2003-0405Search in Google Scholar

Kärner, K. (2006) The metallogenesis of the Skorpion Non-sulphide Zinc Deposit, Namibia. Unpublished Ph.D. thesis, Martin-Luther-Universität Halle-Wittenberg, Germany, 1–133.Search in Google Scholar

Kaufhold, S., Färber, G., Dohrmann, R., Ufer, K., and Grathoff, G. (2015) Zn-rich smectite from the Silver Coin Mine, Nevada, USA. Clay Minerals, 50, 417–430.10.1180/claymin.2015.050.4.01Search in Google Scholar

Kloprogge, T., Komarneni, S., and Amonette, J. (1999) Synthesis of smectite clay minerals: A critical review. Clays and Clay Minerals, 47, 529–554.10.1346/CCMN.1999.0470501Search in Google Scholar

Kobe, H.W. (1977) El Grupo Pucará y su mineralización en el Peru central. Sociedad Geologica Peru Boletin, 55-56, 61–84.Search in Google Scholar

Kobe, H.W. (1982) El ambiente de la mineralización estratoligada de Zn-Pb-Ag-Ba-Mn-Fe-Cu en los sedimentos de la cuenca occidental del Pucará, Peru central. Sociedad Geologica Peru Boletin, 69, 41–69.Search in Google Scholar

Kobe, H.W. (1990a) Stratabound Cu-(Ag) deposits in the Permian Red-Bed Formation, Central Peru. In L. Fontboté, G.C. Amstutz, M. Cardozo, and A. Wauschkuhn, Eds., Stratabound Ore Deposits in the Andes, p. 113–122. Springer.10.1007/978-3-642-88282-1_5Search in Google Scholar

Kobe, H.W. (1990b) Metallogenic evolution of the Yauli dome, Central Peru. In L. Fontboté, G.C. Amstutz, M. Cardozo, and A. Wauschkuhn, Eds., Stratabound Ore Deposits in the Andes, p. 267–278. Springer.10.1007/978-3-642-88282-1_19Search in Google Scholar

Large, D. (2001) The geology of non-sulphide zinc deposits—An overview. Erzmetall, 54, 264–276.Search in Google Scholar

Lozano, R.P., Rossi, C., La Iglesia, Á., and Matesanz, E. (2012) Zaccagnaite-3R, a new Zn-Al hydrotalcite polytype from El Soplao cave (Cantabria, Spain). American Mineralogist, 97, 513–523.10.2138/am.2012.3908Search in Google Scholar

Manceau, A., Lanson, B., Schlegel, M.L., Harge, J.C., Musso, M., Eybert-Berard, L., Hazemann, J.L., Chateigner, D., and Lamble, G.M. (2000) Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy. American Journal of Sciences, 300, 289–343.10.2475/ajs.300.4.289Search in Google Scholar

Mégard, F. (1984) The Andean Orogenic Period and its major structures in central and northern Peru. Journal of the Geological Society, 141, 893–900.10.1144/gsjgs.141.5.0893Search in Google Scholar

Mégard, F. (1987) Structures and evolution of the Peruvian Andes. In J. Schaer and J. Rodgers, Eds., The anatomy of mountain ranges, 179–210. Princeton University Press, New Jersey.10.1515/9781400858644.179Search in Google Scholar

Merlino, S., and Orlandi, P. (2001) Carraraite and zaccagnaite, two new minerals from the Carrara marble quarries: their chemical compositions, physical properties, and structural features. American Mineralogist, 86, 1293–1301.10.2138/am-2001-1017Search in Google Scholar

Merriman, R.J., and Peacor, D.R. (1999) Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. In M. Frey and D. Robinson, Eds., Low-grade Metamorphism, 12–87. Blackwell Science, Oxford.Search in Google Scholar

Meunier, A. (2005) Clays, 472 p. Springer-Verlag.Search in Google Scholar

Meunier, A., and Velde, B. (2004) Illite, 286 p. Springer.10.1007/978-3-662-07850-1Search in Google Scholar

Mondillo, N., Boni, M., Balassone, G., and Villa, I.M. (2014) The Yanque Prospect (Peru): From Polymetallic Zn-Pb Mineralization to a Nonsulfide Deposit. Economic Geology, 109, 1735–1762.10.2113/econgeo.109.6.1735Search in Google Scholar

Mondillo, N., Nieto, F., and Balassone, G. (2015) Micro- and nano-characterization of Zn-clays in nonsulfide supergene ores of southern Peru. American Mineralogist, 100, 2484–2496.10.2138/am-2015-5273Search in Google Scholar

Mondillo, N., Arfè, G., Boni, M., Balassone, G., Boyce, A., Joachimski, M., and Villa, I.M. (2018a) The Cristal Zn prospect (Amazonas region, Northern Peru), Part I: New insights on the sulfide mineralization in the Bongará province. Ore Geology Review, 94, 261–276.10.1016/j.oregeorev.2018.01.021Search in Google Scholar

Mondillo, N., Arfè, G., Herrington, R., Boni, M., Wilkinson, C., and Mormone, A. (2018b) Enrichments of Ge in supergene settings: Evidence from the Cristal supergene Zn nonsulfide prospect, Bongará district, Northern Peru. Mineralium Deposita, 53(2), 155–169.10.1007/s00126-017-0781-1Search in Google Scholar

Montoya, V., Baeyens, B., Glaus, M.A., Kupcik, T., Marques Fernandes, M., Van Laer, L., Bruggeman, C., Maes, N., and Schäfer, T. (2018) Sorption of Sr, Co and Zn on illite: Batch experiments and modelling including Co in-diffusion measurements on compacted samples. Geochimica et Cosmochimica Acta, 223, 1–20.10.1016/j.gca.2017.11.027Search in Google Scholar

Moore, D.M., and Reynolds, R.C.J. (1997) X‑ray Diffraction and the Identification and Analysis of Clay Minerals, 378. Oxford University Press, New York.Search in Google Scholar

Newman, A.C.D., and Brown, G. (1987) The chemical constitution of clays. In A.C.D. Newman, Ed., Chemistry of Clays and Clay Minerals, 128. Wiley.Search in Google Scholar

Nieto, F., Ortega-Huertas, M., Peacor, D.R., and Aróstegui, J. (1996) Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian basin. Clays and Clay Minerals, 44, 304–323.10.1346/CCMN.1996.0440302Search in Google Scholar

Nieto, F., Mellini, F., and Abad, I. (2010) The role of H3O+ in the crystal structure of illite. Clays and Clay Minerals, 58(2), 238–246.10.1346/CCMN.2010.0580208Search in Google Scholar

Paradis, S., Hannigan, P., and Dewing, K. (2007) Mississippi Valley-type lead-zinc deposits. In W.D. Goodfellow, Ed., Mineral Deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods, 185–203. Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, St. John’s, Newfoundland.Search in Google Scholar

Pascua, C.S., Ohnuma, M., Matsushita, Y., Tamura, K., Yamada, H., Cuadros, J., and Ye, J. (2010) Synthesis of monodisperse Zn-smectite. Applied Clay Science, 48, 55–59.10.1016/j.clay.2009.12.016Search in Google Scholar

Petit, S., Righi, D., and Decarreau, A. (2008) Transformation of synthetic Znstevensite to Zn-talc induced by the Hofmann-Klemen effect. Clays and Clay Minerals, 56, 645–654.10.1346/CCMN.2008.0560605Search in Google Scholar

Reid, C.J. (2001) Stratigraphy and mineralization of the Bongará MVT zinc-lead district, northern Peru, 179. M.Sc. thesis, University of Toronto, Canada.Search in Google Scholar

Rieder, M., Cavazzini, G., D’Yakonov, Y.S., Kamanetskii, V.A.F., Gottardi, G., Guggenheim, S., Koval, P.K., Muller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.L., Sassi, F.P., Takeda, H., Weiss, Z., and Wones, D.R. (1998) Nomenclature of the micas. Canadian Mineralogist, 36, 1–8.10.1346/CCMN.1998.0460513Search in Google Scholar

Robert, J.L., and Gaspérin, M. (1985) Crystal structure refinement of hendricksite, A Zn- and Mn-rich trioctahedral potassium mica: A contribution to the crystal chemistry of zinc-bearing minerals. Mineralogy and Petrology, 34, 1–14.10.1007/BF01082453Search in Google Scholar

Rosas, S., Fontboté, L., and Tankard, A. (2007) Tectonic evolution and paleogeography of the Mesozoic Pucará basin, central Peru. Journal of South American Earth Sciences, 24, 1–24.10.1016/j.jsames.2007.03.002Search in Google Scholar

Ross, C. S. (1946) Sauconite—a clay mineral of the Montmorillonite group. American Mineralogist, 31, 411–424.Search in Google Scholar

Rule, A.C., and Radke, F. (1988) Baileychlore, the Zn end member of the trioctahedral chlorite series. American Mineralogist, 73, 135–139.Search in Google Scholar

Sharygin, V.V. (2015) Zincian micas from peralkaline phonolites of the Oktyabrsky massif, Azov Sea region, Ukrainian Shield. European Journal of Mineralogy, 4, 521–533.10.1127/ejm/2015/0027-2460Search in Google Scholar

Srivastava, P., Singh, B., and Angove, M. (2005) Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science, 290, 28–38.10.1016/j.jcis.2005.04.036Search in Google Scholar PubMed

Środoń, J., and Eberl, D.D. (1984) Illite. In S.W. Bailey, Ed., Micas, vol. 13, p. 495–544. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.10.1515/9781501508820-016Search in Google Scholar

Vázquez, M., Nieto, F., Morata, D., Droguet, B., Cariili-Rosua, F.J., and Morales, S. (2014) Evolution of clay mineral assemblages in the Tinguiririca geothermal field, Andean Cordillera of central Chile: an XRD and HRTEM-AEM study. Journal of Volcanology and Geothermal Research, 282, 43–59.10.1016/j.jvolgeores.2014.05.022Search in Google Scholar

Vázquez, M., Bauluz, B., Nieto, F., and Morata, D. (2016) Illitization sequence controller by temperature in volcanic geothermal system: The Tinguiririnca geothermal field, Andean Coridllera, Central Chile. Applied Clay Science, 134, 221–234.10.1016/j.clay.2016.04.011Search in Google Scholar

Whitney, D.L., and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.10.2138/am.2010.3371Search in Google Scholar

Wright, C. (2010) Rio Cristal Resources Corporation Bongará Zinc Project: Technical Report NI 43-101, 102. Canada, Rio Cristal Resources Corporation and AMEC, Peru.Search in Google Scholar

Yamada, H.,Yoshioka, K.,Tamura, K., Fujii, K., and Nakazawa, H. (1999) Compositional gap in dioctahedral-trioctahedral smectite system: beidellite-saponite pseudo-binary join. Clays and Clay Minerals, 47, 803–810.10.1346/CCMN.1999.0470616Search in Google Scholar

Zhang, C., He, H., Tao, Q., Ji, S., Li, S., Ma, L., Su, X., and Zhu, J. (2017) Metal occupancy and its influence on thermal stability of synthetic saponites. Applied Clay Science, 135, 282–288.10.1016/j.clay.2016.10.006Search in Google Scholar

Received: 2019-05-31
Accepted: 2020-01-22
Published Online: 2020-08-11
Published in Print: 2020-08-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Outlooks in Earth and Planetary Materials
  2. Are quasicrystals really so rare in the Universe?
  3. Reaction between Cu-bearing minerals and hydrothermal fluids at 800 °C and 200 MPa: Constraints from synthetic fluid inclusions
  4. Evaluation and application of the quartz-inclusions-in-epidote mineral barometer
  5. Let there be water: How hydration/dehydration reactions accompany key Earth and life processes
  6. Origin of corundum within anorthite megacrysts from anorthositic amphibolites,Granulite Terrane, Southern India
  7. Raman spectroscopy study of manganese oxides: Tunnel structures
  8. Experimental constraints on the partial melting of sediment-metasomatized lithospheric mantle in subduction zones
  9. Interlayer energy of pyrophyllite: Implications for macroscopic friction
  10. Thermodynamic and thermoelastic properties of wurtzite-ZnS by density functional theory
  11. The nature of Zn-phyllosilicates in the nonsulfide Mina Grande and Cristal zinc deposits (Bongará District, Northern Peru): The TEM-HRTEM and AEM perspective
  12. Orthovanadate wakefieldite-(Ce) in symplectites replacing vanadium-bearing omphacite in the ultra-oxidized manganese deposit of Praborna (Aosta Valley, Western Italian Alps)
  13. A simple and effective capsule sealing technique for hydrothermal experiments
  14. Metamorphic amphiboles in the Ironwood Iron-Formation, Gogebic Iron Range, Wisconsin: Implications for potential resource development
  15. Letter
  16. The chlorine-isotopic composition of lunar KREEP from magnesian-suite troctolite 76535
  17. New Mineral Names
Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2020-7140/html
Scroll to top button