Startseite Nuwaite (Ni6GeS2) and butianite (Ni6SnS2), two new minerals from the Allende meteorite: Alteration products in the early solar system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nuwaite (Ni6GeS2) and butianite (Ni6SnS2), two new minerals from the Allende meteorite: Alteration products in the early solar system

  • Chi Ma EMAIL logo und John R. Beckett
Veröffentlicht/Copyright: 28. November 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Nuwaite (Ni6GeS2, IMA 2013-018) and butianite (Ni6SnS2, IMA 2016-028) are two new chalcogenide minerals, occurring as micrometer-sized crystals with grossular, Na-bearing melilite, heazlewoodite, and Ge-bearing Ni-Fe alloys in veins and as mono-mineralic crack-filling material in igneous diopside in the Type B1 Ca-Al-rich inclusion (CAI) ACM-2 from the Allende CV3 carbonaceous chondrite. The chemical composition of type nuwaite is (wt%) Ni 65.3, S 10.3, Ge 8.2, Te 7.9, Sn 5.1, and Fe 1.7, with a sum of 98.5 and an empirical formula of (Ni5.95Fe0.16)(Ge0.60Sn0.23)(S1.72Te0.33). The simplified formula is Ni6(Ge,Sn)(S,Te)2, leading to an end-member of Ni6GeS2. The chemical composition of type butianite is (wt%) Ni 62.1, Sn 8.9, Te 10.3, S 8.9, Ge 5.3, Fe 1.3, sum 99.1, giving rise to an empirical formula of (Ni5.93Fe0.13)(Sn0.52Ge0.41)(S1.56Te0.45). Butianite’s simplified formula is Ni6(Sn,Ge) (S,Te)2 and the end-member formula is Ni6SnS2. Both nuwaite and butianite have an I4/mmm inter-growth structure with a = 3.65 Å, c = 18.14 Å, V = 241.7 Å3, and Z = 2. Their calculated densities are 7.24 and 7.62 g/cm3, respectively. Nuwaite and butianite are the first known meteoritic minerals with high Ge and Sn concentrations.

Nuwaite and butianite are very late-stage, vapor-deposited, alteration products, filling in pores within preexisting grossular-rich alteration veins and cracks in igneous Al,Ti-diopside. These phases and associated heazlewoodite and Ge-bearing alloys are observed only within the Ca-,Al-rich inclusion (CAI) and not outside it or at the inclusion-matrix interface. As only sections in one half of ACM-2 contain nuwaite/butianite, they were probably derived through a relatively low fO2-fS2 sulfidation process, in which a highly localized, low-temperature Ge-, Sn-bearing fluid interacted with a portion of the host CAI. It is likely that the fluid became relatively more Sn- and Te-enriched with time and that crack fillings post-date vein fillings, possibly due to a late remobilization of vein sulfides.

Acknowledgments

SEM, EBSD, and EPMA analyses were carried out at the Caltech GPS Division Analytical Facility, which is supported, in part, by NSF Grants EAR-0318518 and DMR-0080065. J.R.B. acknowledges NASA grant NNG04GG14G. We thank Klaus Keil, Mike Zolensky, and associate editor Steven Simon for helpful reviews.

References cited

Alt, J.C., and Shanks, W.C. (1998) Sulfur in serpentinized oceanic peridotites: Serpentinization processes and microbial sulfate reduction. Journal of Geophysical Research, 103, 9917–9929.10.1029/98JB00576Suche in Google Scholar

Armstrong, J.T., El Goresy, A., and Wasserburg, G.J. (1985a) Willy: A prize noble Ur-Fremdling–-Its history and implications for the formation of Fremdlinge and CAI. Geochimica et Cosmochimica Acta, 49, 1001–1022.10.1016/0016-7037(85)90315-1Suche in Google Scholar

Armstrong, J.T., Hutcheon, I.D., and Wasserburg, G.J. (1985b) Ni-Pt-Ge-rich Fremdlinge: Indicators of a turbulent early solar nebula. Meteoritics, 20, 603A–605A.Suche in Google Scholar

Armstrong, J.T., Hutcheon, I.D., and Wasserburg, G.J. (1987) Zelda and company: Petrogenesis of sulfide-rich Fremdlinge and constraints on solar nebula processes. Geochimica et Cosmochimica Acta, 51, 3155–3173.10.1016/0016-7037(87)90125-6Suche in Google Scholar

Baranov, A.I., Isaeva, A.A., Kloo, L., and Popovkin, B.A. (2003) New metal-rich sulfides Ni6SnS2 and Ni9SnS2 with a 2D metal framework: synthesis, crystal structure, and bonding. Inorganic Chemistry, 42, 6667–6672.10.1021/ic034349+Suche in Google Scholar

Bernstein, L.R. (1985) Germanium geochemistry and mineralogy. Geochimica et Cosmochimica Acta, 49, 2409–2422.10.1016/0016-7037(85)90241-8Suche in Google Scholar

Bernstein, L.R., and Waychunas, G.A. (1987) Germanium crystal chemistry in hematite and goethite from the Apex Mine, Utah, and some new data on germanium in aqueous solution and in stottite. Geochimica et Cosmochimica Acta, 51, 623–630.10.1016/0016-7037(87)90074-3Suche in Google Scholar

Blum, J.D., Wasserburg, G.J., Hutcheon, I.D., Beckett, J.R., and Stolper, E.M. (1989) Origin of opaque assemblages in C3V meteorites: Implications for nebular and planetary processes. Geochimica et Cosmochimica Acta, 53, 543–556.10.1016/0016-7037(89)90404-3Suche in Google Scholar

Capobianco, C.J., Drake, M. J., and de’Aro, J. (1999) Siderophile geochemistry of Ga, Ge, and Sn: Cationic oxidation states in silicate melts and the effect of composition in iron-nickel alloys. Geochimica et Cosmochimica Acta, 63, 2667–2677.10.1016/S0016-7037(99)00085-XSuche in Google Scholar

Chetty, D., and Frimmel, H.E. (2000) The role of evaporites in the genesis of base metal sulphide mineralisation in the Northern Platform of the Pan-African Damara Belt, Namibia: geochemical and fluid inclusion evidence from carbonate wall rock alteration. Mineralium Deposita, 35, 364–376.10.1007/s001260050247Suche in Google Scholar

Clarke, R.S., Jarosewich, E., Mason, B., Nelen, J., Gómez, M., and Hyde, J.R. (1971) The Allende, Mexico, meteorite shower. Smithsonian Contributions to the Earth Science, 5, 1–53.10.5479/si.00810274.5.1Suche in Google Scholar

Eckstrand, O.R. (1975) The Dumont serpentinite: A model for control of nickeliferous opaque mineral assemblages by alteration reactions in ultramafic rocks. Economic Geology, 70, 183–201.10.2113/gsecongeo.70.1.183Suche in Google Scholar

El Goresy, A., Nagel, K., and Ramdohr, P. (1978) Fremdlinge and their noble relatives. Proceedings of the Lunar and Planetary Science Conference, 9, 1279–1303.Suche in Google Scholar

Evrard, C., Fouquet, Y., Moëlo, Y., Rinnert, E., Etoubleau, J., and Langlade, J.A. (2015) Tin concentration in hydrothermal sulphides related to ultramafic rocks along the mid-Atlantic Ridge: a mineralogical study. European Journal of Mineralogy, 27, 627–638.10.1127/ejm/2015/0027-2472Suche in Google Scholar

Fehr, M.A., Rehkämper, M., Halliday, A.N., Hattendorf, B., and Günther, D. (2009) Tellurium isotope compositions of calcium-aluminum-rich inclusions. Meteoritics & Planetary Science, 44, 971–984.10.1111/j.1945-5100.2009.tb00782.xSuche in Google Scholar

Frenzel, M., Ketris, M.P., and Gutzmer, J. (2014) On the geological availability of germanium. Mineralium Deposita, 49, 471–486.10.1007/s00126-013-0506-zSuche in Google Scholar

Froehlich, P.N., Hambrick, G.A., Andreae, M.O., Mortlock, R.A., and Edmond, J.M. (1985) The geochemistry of inorganic germanium in natural waters. Journal of Geophysical Research, 90, 1133–1141.10.1029/JC090iC01p01133Suche in Google Scholar

Frondel, C., and Ito, J. (1957) Geochemistry of germanium in the oxidized zone of the Tsumeb Mine, south-west Africa. American Mineralogist, 42, 743–753.Suche in Google Scholar

Gill, S.B., Piercey, S.J., and Layton-Matthews, D. (2016) Mineralogy and metal zoning of the Cambrian Zn-Pb-Cu-Ag-Au Lemarchant volcanogenic massive sulfide (VMS) deposit, Newfoundland. Canadian Mineralogist, 54, 1307–1344.10.3749/canmin.1500069Suche in Google Scholar

Gole, M.J. (2014) Leaching of S, Cu, and Fe from disseminated Ni-(Fe)-(Cu) sulphide ore during serpentinization of dunite host rocks at Mount Keith, Agnew-Wiluna belt, western Australia. Mineralium Deposita, 49, 821–842.10.1007/s00126-014-0519-2Suche in Google Scholar

Grossman, L., and Ganapathy, R. (1976) Trace elements in the Allende meteorite—I. Coarse-grained, Ca-rich inclusions. Geochimica et Cosmochimica Acta, 40, 331–344.10.1016/0016-7037(76)90211-8Suche in Google Scholar

Hari Kumar, K.C., Wollants, P., and Delaey, L. (1996) Thermodynamic evaluation of Fe-Sn phase diagram. Calphad, 20, 139–149.10.1016/S0364-5916(96)00021-1Suche in Google Scholar

Hudson, D.R., and Travis, G.A. (1981) A native nickel-heazlewoodite-ferroan trevorite assemblage from Mount Clifford, western Australia. Economic Geology, 76, 1686–1697.10.2113/gsecongeo.76.6.1686Suche in Google Scholar

Isaeva, A.A., Baranov, A.I., Kloo, L., Ruck, M., and Popovkin, B.A. (2009) New metal-rich mixed chalcogenides with intergrowth structures: Ni8.21Ge2S2 and Ni8.45Ge2Se2 Solid State Sciences, 11, 1071–1076.10.1016/j.solidstatesciences.2009.03.005Suche in Google Scholar

Johan, Z. (1988) Indium and germanium in the structure of sphalerite: an example of coupled substitution with copper. Mineralogy and Petrology, 39, 211–229.10.1007/BF01163036Suche in Google Scholar

Klein, F., and Bach, W. (2009) Fe-Ni-Co-O-S phase relations in peridotite-seawater interactions. Journal of Petrology, 50, 37–59.10.1093/petrology/egn071Suche in Google Scholar

Krot, A.N., Scott, E.R.D., and Zolensky, M.E. (1995) Mineralogical and chemical modification of compnents in CV3 chondrites: Nebular or asteroidal? Meteoritics, 30, 748–775.10.1111/j.1945-5100.1995.tb01173.xSuche in Google Scholar

Kurtz, A.C., Derry, L.A., and Chadwick, O.A. (2002) Germanium-silicon fractionation in the weathering environment. Geochimica et Cosmochimica Acta, 66, 1525–1537.10.1016/S0016-7037(01)00869-9Suche in Google Scholar

Kuznetsov, A.N., Stroganova, E.A., Serov, A.A., Kirdyankin, D.I., and Novotortsev, V.M. (2017) New quasi-2D nickel-gallium mixed chalcogenides based on the Cu3Au-type extended fragments. Journal of Alloys and Compounds, 696, 413–422.10.1016/j.jallcom.2016.11.292Suche in Google Scholar

Liu, W., Cook, N.J., Ciobanu, C.L., Liu, Y., Qiu, X., and Chen, Y. (2016) Mineralogy of tin-sulfides in the Zijnshan porphyry-epithermal system, Fujian province, China. Ore Geology Reviews, 72, 682–698.10.1016/j.oregeorev.2015.09.009Suche in Google Scholar

Lodders, K. (2003) Solar system abundances and condensation temperatures of the elements. Astrophysical Journal, 591, 1220–1247.10.1086/375492Suche in Google Scholar

Ma, C. (2013) Nuwaite. IMA 2013-018. Mineralogical Magazine, 77, 2695–2709.Suche in Google Scholar

Ma, C. (2015a) Discovery of nuwaite, Ni6GeS2 a new alteration mineral in Allende. Meteoritics & Planetary Science, 50 (S1), no. 5151.Suche in Google Scholar

Ma, C. (2015b) Nanomineralogy of meteorites by advanced electron microscopy: Discovering new minerals and new materials from the early solar system. Microscopy and Microanalysis, 21 (Suppl. 3), 2353–2354. DOI:10.1017/S1431927615012544.10.1017/S1431927615012544Suche in Google Scholar

Ma, C (2016) Butianite. IMA 2016-028. Mineralogical Magazine, 80, 915–922.Suche in Google Scholar

Ma, C (2017) Discovery of new mineral butianite, Ni6SnS2 an alteration phase from Allende. Meteoritics & Planetary Science, 52 (S1), No. 6032.Suche in Google Scholar

Ma, C., and Beckett, J.R. (2016) Majindeite, Mg2Mo3O8 a new mineral from the Allende meteorite and a witness to post-crystallization oxidation of a Ca-Al-rich refractory inclusion. American Mineralogist, 101, 1161–1170.10.2138/am-2016-5399Suche in Google Scholar

Ma, C., and Rossman, G.R. (2008) Barioperovskite, BaTiO3 a new mineral from the Benitoite Mine, California. American Mineralogist, 93, 154–157.10.2138/am.2008.2636Suche in Google Scholar

Ma, C (2009a) Tistarite, Ti2O3 a new refractory mineral from the Allende meteorite. American Mineralogist, 94, 841–844.10.2138/am.2009.3203Suche in Google Scholar

Ma, C (2009b) Grossmanite, CaTi3+AlSiO6 a new pyroxene from the Allende meteorite. American Mineralogist, 94, 1491–1494.10.2138/am.2009.3310Suche in Google Scholar

Ma, C., Connolly, H.C., Beckett, J.R., Tschauner, O., Rossman, G.R., Kampf, A.R., Zega, T.J., Sweeney Smith, S.A., and Schrader, D.L. (2011) Brearleyite, Ca12Al14O32Cl2 a new alteration mineral from the NWA 1934 meteorite. American Mineralogist, 96, 1199–1206.10.2138/am.2011.3755Suche in Google Scholar

Ma, C., Beckett. J.R., and Rossman, G.R. (2014a) Monipite, MoNiP, a new phosphide mineral in a Ca-Al-rich inclusion from the Allende meteorite. American Mineralogist, 99, 198–205.10.2138/am.2014.4512Suche in Google Scholar

Ma, C (2014b) Allendeite (Sc4Zr3O12 and hexamolybdenum (Mo,Ru,Fe), two new minerals from an ultra-refractory inclusion from the Allende meteorite. American Mineralogist, 99, 654–666.10.2138/am.2014.4667Suche in Google Scholar

MacPherson, G.J. (2014) Calcium-aluminum-rich inclusions in chondritic meteorites. In A.M. Davis, Ed., Treatise on Geochemistry, vol. 1, p. 201–246. Elsevier.10.1016/B978-0-08-095975-7.00105-4Suche in Google Scholar

Maiken, K.I., Hansen, K., Mokovicky, E., and Karup-Møller, S. (2003) Exploratory studies on substitutions in tetrahedrite–tennantite solid-solution. Part IV. Substitution of germanium and tin. Neues Jahrbuch für Mineralogie Abhandlung, 179, 43–71.10.1127/0077-7757/2003/0179-0043Suche in Google Scholar

Mason, B., and Martin, P.M. (1977) Geochemical differences among components of the Allende meteorite. Smithsonian Contributions to the Earth Sciences, 19, 84–95.Suche in Google Scholar

Melcher, F., Oberthür, T., and Rammlmair, D. (2006) Geochemical and mineralogical distribution of germanium in the Khusib Springs Cu-Zn-Pb-Ag sulfide deposit, Otavi Mountain Land, Namibia. Ore Geology Reviews, 28, 32–56.10.1016/j.oregeorev.2005.04.006Suche in Google Scholar

Mendybaev, R.A., Richter, F.M., and Davis, A.M. (2006) Crystallization of melilite from CMAS-liquids and the formation of the melilite mantle of type B1 CAIs: Experimental simulations. Geochimica et Cosmochimica Acta, 70, 2622–2642.10.1016/j.gca.2006.02.018Suche in Google Scholar

Mlynarczyk, M. S.J., and Williams-Jones, A.E. (2006) Zoned tourmaline associated with cassiterite: Implications for fluid evolution and tin mineralization in the San Rafael Sn-Cu deposit, southeastern Peru. Canadian Mineralogist, 44, 347–365.10.2113/gscanmin.44.2.347Suche in Google Scholar

Pouchou, J.-L., and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In K.F.J. Heinrich and D.E. Newbury, Eds., Electron Probe Quantitation, p. 31–75. Plenum Press.10.1007/978-1-4899-2617-3_4Suche in Google Scholar

Reiser, F.K.M., Rosa, D.R.N., Pinto, A.M.M., Carvalho, J.R.S., Matos, J.X., Guimarães, F.M.G., Alves, L.C., and de Oliveira, D.P.S. (2011) Mineralogy and geochemistry of tin- and germanium-bearing copper ore, Barrigão re-mobilized vein deposit, Iberian pyrite belt, Portugal. International Geology Review, 53, 1212–1238.10.1080/00206811003683168Suche in Google Scholar

Rouxel, O.J., and Luais, B. (2017) Germanium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82, 601–656.10.1515/9783110545630-015Suche in Google Scholar

Schulze, H., Bischoff, A., Palme, H., Spettel, B., Dreibus, G., and Otto, J. (1994) Mineralogy and chemistry of Rumuruti: The first meteorite fall of the new R chondrite group. Meteoritics, 29, 275–86.10.1111/j.1945-5100.1994.tb00681.xSuche in Google Scholar

Sciortino, M., Mungall, J.E., and Muinonen, J. (2015) Generation of high-Ni sulfide and alloy phases during serpentinization of dunite in the Dumont sill, Quebec. Economic Geology, 110, 733–761.10.2113/econgeo.110.3.733Suche in Google Scholar

Scott, E.R.D., and Wasson, J.T. (1975) Classification and properties of iron meteorites. Reviews of Geophysics and Space Physics, 13, 527–546.10.1029/RG013i004p00527Suche in Google Scholar

Shimizu, M., and Shikazono, N. (1987) Stannoidite-bearing tin ore: mineralogy, texture and physicochemical environment of formation. Canadian Mineralogist, 25, 229–236.Suche in Google Scholar

Tzamos, E., Filippidis, A., Michailidis, K., Koroneos, A., Rassios, A., Grieco, G., Pedrotti, M., and Stamoulis, K. (2016) Mineral chemistry and formation of awaruite and heazlewoodite in the Xerolivado chrome mine, Vourinos, Greece. Bulletin of the Geological Society of Greece, 50, 2047–2056.10.12681/bgsg.11951Suche in Google Scholar

Wark, D.A., and Lovering, J.F. (1978) Refractory/platinum metals and other opaque phases in Allende Ca-Al-rich inclusions (CAI’s). Lunar and Planetary Science, 9, 1214–1216.Suche in Google Scholar

Williams, K.L. (1960) An association of awaruite with heazlewoodite. American Mineralogist, 45, 450–453.Suche in Google Scholar

Received: 2018-04-22
Accepted: 2018-08-14
Published Online: 2018-11-28
Published in Print: 2018-12-19

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Letter
  2. Rapid solid-state sintering in volcanic systems
  3. How geometry and anisotropy affect residual strain in host-inclusion systems: Coupling experimental and numerical approaches
  4. Special collection: Earth analogs for martian geological materials and processes
  5. Diverse mineral assemblages of acidic alteration in the Rio Tinto area (southwest Spain): Implications for Mars
  6. Special collection: From magmas to ore deposits
  7. Archaean hydrothermal fluid modified zircons at Sunrise Dam and Kanowna Belle gold deposits, Western Australia: Implications for post-magmatic fluid activity and ore genesis
  8. Special collection: Water in nominally hydrous and anhydrous minerals
  9. New high-pressure phases in MOOH (M = Al, Ga, In)
  10. Articles
  11. Nuwaite (Ni6GeS2) and butianite (Ni6SnS2), two new minerals from the Allende meteorite: Alteration products in the early solar system
  12. The role of magma mixing, identification of mafic magma inputs, and structure of the underlying magmatic system at Mount St. Helens
  13. Thermodynamic properties of natural melilites
  14. Thermal conductivity anomaly in spin-crossover ferropericlase under lower mantle conditions and implications for heat flow across the core-mantle boundary
  15. Electronic properties and compressional behavior of Fe–Si alloys at high pressure
  16. Diffusion of molybdenum and tungsten in anhydrous and hydrous granitic melts
  17. High-pressure single-crystal structural analysis of AlSiO3OH phase egg
  18. Structural variations along the apatite F-OH join
  19. Raman modes of carbonate minerals as pressure and temperature gauges up to 6 GPa and 500 °C
  20. Crystallization conditions of micas in oxidized igneous systems
  21. The role of crustal melting in the formation of rhyolites: Constraints from SIMS oxygen isotope data (Chon Aike Province, Patagonia, Argentina)
  22. New Mineral Names
  23. Book Review
Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2018-6599/html?lang=de
Button zum nach oben scrollen