Startseite Mineralogical characterization and genesis of hydrothermal Mn oxides from the flank of the Juan the Fuca Ridge
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mineralogical characterization and genesis of hydrothermal Mn oxides from the flank of the Juan the Fuca Ridge

  • M.D. Buatier EMAIL logo , D. Guillaume , C.G. Wheat , L. Hervé und T. Adatte
Veröffentlicht/Copyright: 28. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Several sites of active hydrothermal flow have been found on the eastern flank of the Juan de Fuca Ridge. These sites are typically located along the edge of basaltic outcrops where sediment is thin. We present data on Mn-oxides formed on such outcrops (Zona Bare and Grinin Bare). These oxides are either black-layered crust or soft micro-concretions found in partially altered sediments. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses of Mn crusts indicate the presence of well-crystallized todorokite and birnessite encrusting detrital minerals and replacing siliceous fossil. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) analyses were used to identify amorphous and poorly crystallized Mn-rich phases in partially altered sediments and crusts. TEM of impregnated samples showed textural evidence suggesting that amorphous Mn oxides are incrusting cellular structures that could be bacteria. The valence state of Mn in these oxides was determined by parallel electron energy loss spectroscopy (PEELS). Results indicate that todorokite and birnessite have an average valence state of about 3.7 whereas the poorly crystallized Mn-rich phases have a lower valence state. These data suggest that the formation of hydrothermal Mn concretions occurs in several steps. The initial step is the adsorption or precipitation of Mn, Fe, and Si around cell-wall bacteria, extracellular polymers, and siliceous fossil remains. These mineralizations are poorly crystallized phyllomanganates, which progressively increase in size and crystallinity to give the final birnessite and todorokite products. All of these Mn-rich phases are the result of interactions between hydrothermal fluid and sediments and formed in areas where hydrothermal fluids discharge through the sediment.

Received: 2003-9-15
Accepted: 2004-5-31
Published Online: 2015-3-28
Published in Print: 2004-11-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. First-principle study of polytype structures of 1:1 dioctahedral phyllosilicates
  2. Calorimetry of liquids in the system Na2O-Fe2O3-SiO2
  3. A Mössbauer study of the oxidation state of Fe in silicate melts
  4. Nanometer-scale measurements of Fe3+/ΣFe by electron energy-loss spectroscopy: A cautionary note
  5. The most reduced rock from the moon, Apollo 14 basalt 14053: Its unique features and their origin
  6. Quantitative analysis of ammonium in biotite using infrared spectroscopy
  7. Lizardite-chlorite structural relationships and an inferred high-pressure lizardite polytype
  8. V oxidation state and coordination number in silicate glasses by XAS
  9. Structure of the fluorapatite (100)-water interface by high-resolution X-ray reflectivity
  10. Origin of diffuse superstructure reflections in labuntsovite-group minerals
  11. Isosymmetric structural phase transition of orthoenstatite: Molecular dynamics simulation
  12. Crystal nucleation in hydrous rhyolite: Experimental data applied to classical theory
  13. Investigation of polytypes in lepidolite using electron back-scattered diffraction
  14. Iron partitioning between basaltic melts and clinopyroxene as a function of oxygen fugacity
  15. The synthesis of zeolite-P, Linde Type A, and hydroxysodalite zeolites from paper sludge ash at low temperature (80 °C): Optimal ash-leaching condition for zeolite synthesis
  16. High-pressure viscometry of polymerized silicate melts and limitations of the Eyring equation
  17. Biological control on calcite crystallization: AFM investigation of coccolith polysaccharide function
  18. Order parameter variation through the C2/m-P21/m phase transition in cummingtonite
  19. Arsenate sorption on schwertmannite
  20. Evidence on the structure of synthetic schwertmannite
  21. Crystal-chemical characterization of tourmalines from the English Lake District: Electron-microprobe analyses and Mössbauer spectroscopy
  22. Crystal chemistry and paragenesis of compositionally unique (Al-, Fe-, Nb-, and Zr-rich) titanite from Afrikanda, Russia
  23. Site distribution of Fe2+and Fe3+in the axinite mineral group: New crystal-chemical formula
  24. Epidote-rich talc-kyanite-phengite eclogites, Sulu terrane, eastern China: P-T-fO₂estimates and the significance of the epidote-talc assemblage in eclogite
  25. Quantitative mineralogy of the Yukon River system: Changes with reach and season, and determining sediment provenance
  26. Exsolution of thortveitite, yttrialite, and xenotime during low-temperature recrystallization of zircon from New Caledonia, and their significance for trace element incorporation in zircon
  27. Mineralogical characterization and genesis of hydrothermal Mn oxides from the flank of the Juan the Fuca Ridge
  28. Synchrotron X-ray diffraction study of the structure of shafranovskite, K2Na3(Mn,Fe,Na)4[Si9(O,OH)27](OH)2⋅nH2O, a rare manganese phyllosilicate from the Kola peninsula, Russia
  29. Letter. Coupled cation and oxygen-isotope exchange between alkali feldspar and aqueous chloride solution
Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2004-11-1227/html
Button zum nach oben scrollen