Startseite Nanometer-scale measurements of Fe3+/ΣFe by electron energy-loss spectroscopy: A cautionary note
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nanometer-scale measurements of Fe3+/ΣFe by electron energy-loss spectroscopy: A cautionary note

  • Laurence A. J. Garvie EMAIL logo , Thomas J. Zega , Peter Rez und Peter R. Buseck
Veröffentlicht/Copyright: 28. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The effects of electron-beam damage on the Fe3+/ΣFe (total iron) ratio were measured by electron energy-loss spectroscopy (EELS) with a transmission electron microscope (TEM). Spectra were acquired from crushed and ion-beam-thinned cronstedtite. For fluences below 1 × 104 e/Å2, the Fe3+/ΣFe values from crushed grains range between 0.43 and 0.49, consistent with undamaged material. These measurements were acquired from flakes 180 to 1000 Å thick. With increase influence, samples <400 Å thick become damaged and exhibit Fe3+/ΣFe values >0.5. The critical fluence for radiation damage by 100 kV electrons as defined by Fe3+/ΣFe <0.5 for cronstedtite at 300 K, is 1 × 104 e/Å2. The absorbed dose to the speciman during acquisition of a typical EELS spectrum is large, with values around 2.2 × 1010 Gy (J/kg), equivalent to the deposition of 620 eV/Å3. Cooling to liquid N2 temperature did not significantly slow the damage process. Ion-beam thinning produces an amorphous layer on crystal surfaces. Spectra from the thinnest regions, which are amorphous, exhibit Fe3+/ΣFe >0.7. With increase in sample thickness, the Fe3+/ΣFe values decrease to a minimum, consistent with data from the undamaged material. The increase of Fe3+/ΣFe with respect to electron-beam irradiation is likely caused by loss of H. At low fluences, the loss of H is negligible, thus allowing consistent Fe3+/ΣFe values to be measured. The cronstedtite study illustrates the care required when using EELS to measure Fe3+/ΣFe values. Similar damage effects occur for a range of high-valence and mixed-oxidation state metals in minerals. EELS is the only spectroscopic method that can be used routinely to determine mixed-valence ratios at the nanometer scale, but care is required when measuring these data. Consideration needs to be given to the incident beam current, fluence, fluence rate, and sample thickness.

Received: 2003-10-10
Accepted: 2004-5-25
Published Online: 2015-3-28
Published in Print: 2004-11-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. First-principle study of polytype structures of 1:1 dioctahedral phyllosilicates
  2. Calorimetry of liquids in the system Na2O-Fe2O3-SiO2
  3. A Mössbauer study of the oxidation state of Fe in silicate melts
  4. Nanometer-scale measurements of Fe3+/ΣFe by electron energy-loss spectroscopy: A cautionary note
  5. The most reduced rock from the moon, Apollo 14 basalt 14053: Its unique features and their origin
  6. Quantitative analysis of ammonium in biotite using infrared spectroscopy
  7. Lizardite-chlorite structural relationships and an inferred high-pressure lizardite polytype
  8. V oxidation state and coordination number in silicate glasses by XAS
  9. Structure of the fluorapatite (100)-water interface by high-resolution X-ray reflectivity
  10. Origin of diffuse superstructure reflections in labuntsovite-group minerals
  11. Isosymmetric structural phase transition of orthoenstatite: Molecular dynamics simulation
  12. Crystal nucleation in hydrous rhyolite: Experimental data applied to classical theory
  13. Investigation of polytypes in lepidolite using electron back-scattered diffraction
  14. Iron partitioning between basaltic melts and clinopyroxene as a function of oxygen fugacity
  15. The synthesis of zeolite-P, Linde Type A, and hydroxysodalite zeolites from paper sludge ash at low temperature (80 °C): Optimal ash-leaching condition for zeolite synthesis
  16. High-pressure viscometry of polymerized silicate melts and limitations of the Eyring equation
  17. Biological control on calcite crystallization: AFM investigation of coccolith polysaccharide function
  18. Order parameter variation through the C2/m-P21/m phase transition in cummingtonite
  19. Arsenate sorption on schwertmannite
  20. Evidence on the structure of synthetic schwertmannite
  21. Crystal-chemical characterization of tourmalines from the English Lake District: Electron-microprobe analyses and Mössbauer spectroscopy
  22. Crystal chemistry and paragenesis of compositionally unique (Al-, Fe-, Nb-, and Zr-rich) titanite from Afrikanda, Russia
  23. Site distribution of Fe2+and Fe3+in the axinite mineral group: New crystal-chemical formula
  24. Epidote-rich talc-kyanite-phengite eclogites, Sulu terrane, eastern China: P-T-fO₂estimates and the significance of the epidote-talc assemblage in eclogite
  25. Quantitative mineralogy of the Yukon River system: Changes with reach and season, and determining sediment provenance
  26. Exsolution of thortveitite, yttrialite, and xenotime during low-temperature recrystallization of zircon from New Caledonia, and their significance for trace element incorporation in zircon
  27. Mineralogical characterization and genesis of hydrothermal Mn oxides from the flank of the Juan the Fuca Ridge
  28. Synchrotron X-ray diffraction study of the structure of shafranovskite, K2Na3(Mn,Fe,Na)4[Si9(O,OH)27](OH)2⋅nH2O, a rare manganese phyllosilicate from the Kola peninsula, Russia
  29. Letter. Coupled cation and oxygen-isotope exchange between alkali feldspar and aqueous chloride solution
Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2004-11-1204/html
Button zum nach oben scrollen