Startseite A Mössbauer study of the oxidation state of Fe in silicate melts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Mössbauer study of the oxidation state of Fe in silicate melts

  • Kasthuri D. Jayasuriya , Hugh St.C. Oʼneill EMAIL logo , Andrew J. Berry und Stewart J. Campbell
Veröffentlicht/Copyright: 28. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Fe3+/ΣFe ratios were determined from Mössbauer spectra recorded for a series of 17 anorthitediopside eutectic glasses containing 1 wt% 57Fe2O3 quenched from melts equilibrated over a range of oxygen fugacities from fO₂ ~ 105 bars (Fe3+/ΣFe = 1) to 10-13 bars (Fe3+/ΣFe = 0) at 1682 K. Fe3+/Fe2+ was found to be proportional to fO₂ to the power of 0.245 ± 0.004, in excellent agreement with the theoretical value of 0.25 expected from the stoichiometry of the reaction Fe2+O + 0.25 O2 = Fe3+O1.5. The uncertainty in the Fe3+/ΣFe ratios determined by Mössbauer spectroscopy was estimated as ± 0.01 (1σ) from the fit of the data to the theoretical expression, which is significantly less than that quoted for previous measurements on silicate glasses; this results from fitting the spectra of a large number of systematically varying samples, which allows many of the ambiguities associated with the fitting procedure to be minimized. Fe3+/ΣFe ratios were then determined for samples of the anorthitediopside eutectic composition equilibrated at selected values of fO₂, to which up to 30 wt% Fe2O3 had been added. Fe3+/ΣFe was found to vary with ΣFe (or FeOT), but both the 1 wt% and high FeOT data could be satisfactorily fit assuming the ideal stoichiometry (i.e., Fe3+/Fe2+ ∝fO₂1/4) by the inclusion of a Margules term describing Fe2+-Fe3+ interactions. The large negative value of this term indicates a tendency toward the formation of Fe2+-Fe3+ complexes in the melt. The resulting expression, using the ideal exponent of 0.25, gave a fit to 289 Fe3+/ΣFe values, compiled from various literature sources, of similar quality as previous empirical models which found an exponent of ~0.20. Although the empirical models reproduce Fe3+/ΣFe values of glasses with high FeOT reasonably well, they describe the data for 1 wt% FeOT poorly. The non-ideal values of the exponent describing the dependence of Fe3+/ΣFe on fO₂ at high FeOT are an artifact of models that did not include a term explicitly to describe the Fe2+-Fe3+ interactions. An alternative model in which Fe in the silicate melt is described in terms of three species, Fe2+O, Fe3+O1.5, and the non-integral valence species Fe2.6+O1.3, was also tested with promising results. However, at present there is no model that fits the data within the assessed accuracy of the experimental measurements.

Received: 2003-8-26
Accepted: 2004-5-27
Published Online: 2015-3-28
Published in Print: 2004-11-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. First-principle study of polytype structures of 1:1 dioctahedral phyllosilicates
  2. Calorimetry of liquids in the system Na2O-Fe2O3-SiO2
  3. A Mössbauer study of the oxidation state of Fe in silicate melts
  4. Nanometer-scale measurements of Fe3+/ΣFe by electron energy-loss spectroscopy: A cautionary note
  5. The most reduced rock from the moon, Apollo 14 basalt 14053: Its unique features and their origin
  6. Quantitative analysis of ammonium in biotite using infrared spectroscopy
  7. Lizardite-chlorite structural relationships and an inferred high-pressure lizardite polytype
  8. V oxidation state and coordination number in silicate glasses by XAS
  9. Structure of the fluorapatite (100)-water interface by high-resolution X-ray reflectivity
  10. Origin of diffuse superstructure reflections in labuntsovite-group minerals
  11. Isosymmetric structural phase transition of orthoenstatite: Molecular dynamics simulation
  12. Crystal nucleation in hydrous rhyolite: Experimental data applied to classical theory
  13. Investigation of polytypes in lepidolite using electron back-scattered diffraction
  14. Iron partitioning between basaltic melts and clinopyroxene as a function of oxygen fugacity
  15. The synthesis of zeolite-P, Linde Type A, and hydroxysodalite zeolites from paper sludge ash at low temperature (80 °C): Optimal ash-leaching condition for zeolite synthesis
  16. High-pressure viscometry of polymerized silicate melts and limitations of the Eyring equation
  17. Biological control on calcite crystallization: AFM investigation of coccolith polysaccharide function
  18. Order parameter variation through the C2/m-P21/m phase transition in cummingtonite
  19. Arsenate sorption on schwertmannite
  20. Evidence on the structure of synthetic schwertmannite
  21. Crystal-chemical characterization of tourmalines from the English Lake District: Electron-microprobe analyses and Mössbauer spectroscopy
  22. Crystal chemistry and paragenesis of compositionally unique (Al-, Fe-, Nb-, and Zr-rich) titanite from Afrikanda, Russia
  23. Site distribution of Fe2+and Fe3+in the axinite mineral group: New crystal-chemical formula
  24. Epidote-rich talc-kyanite-phengite eclogites, Sulu terrane, eastern China: P-T-fO₂estimates and the significance of the epidote-talc assemblage in eclogite
  25. Quantitative mineralogy of the Yukon River system: Changes with reach and season, and determining sediment provenance
  26. Exsolution of thortveitite, yttrialite, and xenotime during low-temperature recrystallization of zircon from New Caledonia, and their significance for trace element incorporation in zircon
  27. Mineralogical characterization and genesis of hydrothermal Mn oxides from the flank of the Juan the Fuca Ridge
  28. Synchrotron X-ray diffraction study of the structure of shafranovskite, K2Na3(Mn,Fe,Na)4[Si9(O,OH)27](OH)2⋅nH2O, a rare manganese phyllosilicate from the Kola peninsula, Russia
  29. Letter. Coupled cation and oxygen-isotope exchange between alkali feldspar and aqueous chloride solution
Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2004-11-1203/html
Button zum nach oben scrollen