Home Tactical Order Allocation in International Manufacturing Networks
Article
Licensed
Unlicensed Requires Authentication

Tactical Order Allocation in International Manufacturing Networks

  • Michael Martin

    Michael Martin, M. Sc., born in 1995, studied mechanical engineering at Technical University Munich and Baden-Wuerttemberg Cooperative State University. He is a research associate in the group Global Production Strategies at the wbk Institute of Production Science at the Karlsruhe Institute of Technology (KIT).

    EMAIL logo
    , Moritz Hörger

    Moritz Hörger, M. Sc., born in 1997, studied industrial engineering at Karlsruhe Institute of Technology. He is a research associate in the group Global Production Strategies at the wbk Institute of Production Science at the Karlsruhe Institute of Technology (KIT).

    and Gisela Lanza

    Prof. Dr.-Ing. Gisela Lanza studied industrial engineering at the Karlsruhe Institute of Technology (KIT) and held the first shared professorship “Global Production Engineering and Quality” at KIT in cooperation with Daimler AG. Since 2003, she has been the head of the Production Systems Department at the wbk Institute of Production Science of Karlsruhe Institute of Technology (KIT).

Published/Copyright: February 10, 2024

Abstract

Manufacturing networks are subject to various operational disruptions, requiring rapid long-term planning adjustments. Reconfigurable manufacturing systems allow the network plants’ dynamic adaptation, enabling flexible manufacturing volume shifts. Therefore, the present paper introduces a novel approach to tactically optimize order allocations in manufacturing networks. With the help of an extended lot sizing and scheduling problem, orders are assigned in a multi-plant, multi-product manufacturing network.

Abstract

Produktionsnetzwerke sind verschiedenen Störungen ausgesetzt, die schnelle langfristige Planungsanpassungen erfordern. Rekonfigurierbare Produktionssysteme ermöglichen eine dynamische Anpassung der Systeme im Produktionsnetzwerk und damit eine flexible Verlagerung des Produktionsvolumens. Daher wird in diesem Beitrag ein neuartiger Ansatz zur taktischen Optimierung der Auftragsallokation in Produktionsnetzwerken vorgestellt. Mithilfe eines adaptierten Losgrößen- und Reihenfolgeproblems werden Aufträge in einem werks- und produktübergreifenden Produktionsnetzwerk zugewiesen.


Note

This article is peer reviewed by the members of the ZWF Advisory Board.



Tel.: +49 (0) 172 138 7910

About the authors

Michael Martin

Michael Martin, M. Sc., born in 1995, studied mechanical engineering at Technical University Munich and Baden-Wuerttemberg Cooperative State University. He is a research associate in the group Global Production Strategies at the wbk Institute of Production Science at the Karlsruhe Institute of Technology (KIT).

Moritz Hörger

Moritz Hörger, M. Sc., born in 1997, studied industrial engineering at Karlsruhe Institute of Technology. He is a research associate in the group Global Production Strategies at the wbk Institute of Production Science at the Karlsruhe Institute of Technology (KIT).

Prof. Dr.-Ing. Gisela Lanza

Prof. Dr.-Ing. Gisela Lanza studied industrial engineering at the Karlsruhe Institute of Technology (KIT) and held the first shared professorship “Global Production Engineering and Quality” at KIT in cooperation with Daimler AG. Since 2003, she has been the head of the Production Systems Department at the wbk Institute of Production Science of Karlsruhe Institute of Technology (KIT).

Literature

1 Peukert, S.; Hörger, M.; Lanza, G.: Fostering Robustness in Production Networks in an Increasingly Disruption-prone World. CIRP Journal of Manufacturing Science and Technology 41 (2023), pp. 413–429 DOI:10.1016/j.cirpj.2023.01.00210.1016/j.cirpj.2023.01.002Search in Google Scholar

2 Schuh, G.; Friedli, T.; Lanza, G; Schollemann, A.; Specht, F.; Benfer, M.: Zukunftsfähige Produktionsnetzwerke in disruptiven Zeiten. ZWF 117 (2022) 12, pp. 794–798 DOI:10.1515/zwf-2022-116010.1515/zwf-2022-1160Search in Google Scholar

3 Müller-Seitz, G.; Sydow, J.: Umgang mit Unsicherheit in globalen Produktionsnetzwerken und Zulieferketten (Dealing with Uncertainty in Global Production and Supply Networks) 2012Search in Google Scholar

4 Peukert, S.; Hörger, M.; Zehner, M.: Linking Tactical Planning and Operational Control to Improve Disruption Management in Global Production Networks in the Aircraft Manufacturing Industry. CIRP Journal of Manufacturing Science and Technology 46 (2023), pp. 36–47 DOI:10.1016/j.cirpj.2023.07.00910.1016/j.cirpj.2023.07.009Search in Google Scholar

5 Lanza, G.; Ferdows, K.; Kara, S.; Mourtzis, D.; Schuh, G.; Váncza, J.; Wang, L.; Wiendahl, H.-P.: Global Production Networks: Design and Operation. CIRP Annals 68 (2019) 2, pp. 823–841 DOI:10.1016/j.cirp.2019.05.00810.1016/j.cirp.2019.05.008Search in Google Scholar

6 Urgo, M.; Buergin, J.; Tolio, T.; Lanza, G.: Order Allocation and Sequencing with Variable Degree of Uncertainty in Aircraft Manufacturing. CIRP Annals 67 (2018) 1, pp. 431–436 DOI:10.1016/j.cirp.2018.04.03810.1016/j.cirp.2018.04.038Search in Google Scholar

7 Wiendahl, H.-P.; ElMaraghy, H.; Nyhuis, P.; Zaeh, M.; Wiendahl, H.-H.; Duffie, N.; Brieke, M.: Changeable Manufacturing – Classification, Design and Operation. CIRP Annals 56 (2007) 2, pp. 783–809 DOI:10.1016/j.cirp.2007.10.00310.1016/j.cirp.2007.10.003Search in Google Scholar

8 Wiendahl, H.-P.; Reichardt, J.; Nyhuis, P.: Handbuch Fabrikplanung – Konzept, Gestaltung und Umsetzung wandlungsfähiger Produktionsstätten. Hanser, München, Wien 2014 DOI:10.3139/9783446437029.fm10.3139/9783446437029.fmSearch in Google Scholar

9 Martin, M.; Behrendt, S.; Enke, C.; Tutsch, H.; Peukert, S.; Lanza, G.: Flexibility and Changeability for Software-Defined Manufacturing. In: Galizia, F.; Bortolini, M. (Hrsg.): Production Processes and Product Evolution in the Age of Disruption. Springer International Publishing, Cham 2023, pp. 373–380 DOI:10.1007/978-3-031-34821-1_4110.1007/978-3-031-34821-1_41Search in Google Scholar

10 Azab, A.; ElMaraghy, H.; Nyhuis, P.; Pachow-Frauenhofer, J.; Schmidt, M.: Mechanics of Change: A Framework to Reconfigure Manufacturing Systems. CIRP Journal of Manufacturing Science and Technology 6 (2013) 2, pp. 110–119 DOI:10.1016/j.cirpj.2012.12.00210.1016/j.cirpj.2012.12.002Search in Google Scholar

11 Wittek, K.: Standortübergreifende Programmplanung in flexiblen Produktionsnetzwerken der Automobilindustrie. Zugl.: Braunschweig, Techn. Univ., Diss., 2012: Springer-Gabler Research. Springer Gabler, Wiesbaden 2013 DOI:10.1007/978-3-658-01838-210.1007/978-3-658-01838-2Search in Google Scholar

12 be Isa, J.; Epha, H.; Braunreuther, S.; Reinhart, G.: Management of Reconfigurable Production Networks in Order-Based Production. In: Moon, I.; Lee, G.; Park, J.; Kiritsis, D.; Cieminski, G. von (Hrsg.): Advances in Production Management Systems. Smart Manufacturing for Industry 4.0. Springer International Publishing, Cham 2018, pp. 490–497 DOI:10.1007/978-3-319-99707-0_6110.1007/978-3-319-99707-0_61Search in Google Scholar

13 Bürgin, J.: Robuste Auftragsplanung in Produktionsnetzwerken – Mittelfristige Planung der variantenreichen Serienproduktion unter Unsicherheit der Kundenauftragskonfigurationen. Karlsruhe 2018Search in Google Scholar

14 Sousa Agostino, I.; Frazzon, E.; Soares Alcala, S; Pedro Basto, J; Taboada Rodriguez, C.: Dynamic Production Order Allocation for Distributed Additive Manufacturing. IFAC-PapersOnLine 53 (2020) 2, pp. 10658–10663 DOI:10.1016/j.ifacol.2020.12.283210.1016/j.ifacol.2020.12.2832Search in Google Scholar

15 Milde, M.; Sippl, F.; Reinhart, G.: Simulation of Order Processing in Global Production Networks. Procedia CIRP 104 (2021), pp. 8–13 DOI:10.1016/j.procir.2021.11.00110.1016/j.procir.2021.11.001Search in Google Scholar

16 Fleischmann, B.; Meyr, H.: The General Lotsizing and Scheduling Problem. OR Spektrum 19 (1997) 1, pp. 11–21 DOI:10.1007/BF0153980010.1007/BF01539800Search in Google Scholar

17 Stammen-Hegener, C.: Simultane Losgrößen- und Reihenfolgeplanung bei ein- und mehrstufiger Fertigung. Deutscher Universitätsverlag, Wiesbaden 2002 DOI:10.1007/978-3-663-11367-610.1007/978-3-663-11367-6Search in Google Scholar

18 Xie, J.; Dong, J.: Heuristic Genetic Algorithms for General Capacitated Lot-sizing Problems. Computers & Mathematics with Applications 44 (2002) 1-2, pp. 263–276 DOI:10.1016/S0898-1221(02)00146-310.1016/S0898-1221(02)00146-3Search in Google Scholar

19 Sambasivan, M.; Yahya, S.: A Lagrangean-based Heuristic for Multi-plant, Multi-item, Multi-period Capacitated Lot-sizing Problems with Inter-plant Transfers. Computers & Operations Research 32 (2005) 3, pp. 537–555 DOI:10.1016/j.cor.2003.08.00210.1016/j.cor.2003.08.002Search in Google Scholar

20 Quadt, D.; Kuhn, H.: Capacitated Lot-sizing and Scheduling with Parallel Machines, Back-orders, and Setup Carry-over. Naval Research Logistics 56 (2009) 4, pp. 366–384 DOI:10.1002/nav.2034510.1002/nav.20345Search in Google Scholar

21 Darvish, M.; Larrain, H.; Coelho, L.: A Dynamic Multi-plant Lot-sizing and Distribution problem. International Journal of Production Research 54 (2016) 22, pp. 6707–6717 DOI:10.1080/00207543.2016.115462310.1080/00207543.2016.1154623Search in Google Scholar

22 Patil, A.; Badhotiya, G.; Nepal, B.; Soni, G.: Modeling Multi-Plant Capacitated Lot Sizing Problem with Interplant Transfer. International Journal of Mathematical, Engineering and Management Sciences 6 (2021) 3, pp. 961–974 DOI:10.33889/IJMEMS.2021.6.3.05710.33889/IJMEMS.2021.6.3.057Search in Google Scholar

23 Jalal, A.; Alvarez, A.; Alvarez-Cruz, C.; La Vega, J. de; Moreno, A.: The Robust Multi-plant Capacitated Lot-sizing Problem. TOP 31 (2023) 2, pp. 302–330 DOI:10.1007/s11750-022-00638-010.1007/s11750-022-00638-0Search in Google Scholar

24 Lohmer, J.; Lasch, R.: Production Planning and Scheduling in Multi-factory Production Networks: A Systematic Literature Review. International Journal of Production Research 59 (2021) 7, pp. 2028–2054 DOI:10.1080/00207543.2020.179720710.1080/00207543.2020.1797207Search in Google Scholar

25 Bagheri Rad, N.; Behnamian, J.: Recent Trends in Distributed Production Network Scheduling Problem. Artificial Intelligence Review 55 (2022) 4, pp. 2945–2995 DOI:10.1007/s10462-021-10081-510.1007/s10462-021-10081-5Search in Google Scholar

Published Online: 2024-02-10
Published in Print: 2024-02-29

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zwf-2024-1003/html
Scroll to top button