Home Strategic Manufacturing Network Performance Assessment Tool
Article
Licensed
Unlicensed Requires Authentication

Strategic Manufacturing Network Performance Assessment Tool

Implications from Two Use-Cases
  • Gwen Louis Steier

    Gwen Louis Steier, M. Sc., studied industrial engineering with a major in mechanical engineering at TU Darmstadt and the Karlsruhe Institute of Technology (KIT). Since 2020, he has been working as a research associate at the wbk Institute of Production Science at KIT in the Production Systems department and investigating global production strategies.

    EMAIL logo
    , Kevin Gleich

    Kevin Gleich, M. Sc., studied industrial engineering at the Karlsruhe Institute of Technology (KIT). He is a research associate at the wbk Institute of Production Science of KIT in the department of Production Systems with a focus on manufacturing network configuration.

    and Gisela Lanza

    Prof. Dr.-Ing. Gisela Lanza studied industrial engineering at the Karlsruhe Institute of Technology (KIT) and held the first shared professorship “Global Production Engineering and Quality” at KIT in cooperation with Daimler AG. Since 2003, she has been head of the Production Systems Department at the wbk Institute of Production Science of KIT.

Published/Copyright: February 10, 2024

Abstract

The long-term configuration of the production network includes the allocation of products and processes. Numerous, sometimes conflicting objectives are pursued, such as market access, economies of scale and risk mitigation. However, in order to systematically configure the network, it is necessary to strategically analyse the strengths and weaknesses of the sites. This article presents a fuzzy inference-based approach for the holistic evaluation of the production networks. The tool was applied in two practical case studies. The results and implications are also presented.

Abstract

Die langfristige Konfiguration des Produktionsnetzes ist ein hochkomplexes Entscheidungsfeld. Die Allokation von Produkten, Prozessen und Ressourcen ist das Ergebnis zahlreicher, sich gegenseitig überlagernder strategischer Motive wie Marktzugang, Skalenerträge und Risikominderung. Der Ausgangspunkt für die Netzwerkkonfiguration ist die Analyse des bestehenden Produktionsnetzwerks. In diesem Beitrag wird ein Fuzzy-Inferenz-basierter Ansatz zur ganzheitlichen Bewertung von Produktionsnetzwerken vorgestellt. Das Instrument wurde in zwei praktischen Fallstudien angewandt. Die Ergebnisse und Implikationen werden ebenfalls vorgestellt.


Note

This article is peer reviewed by the members of the ZWF Advisory Board.



Tel.: +49 (0) 1523 950 2660

About the authors

Gwen Louis Steier

Gwen Louis Steier, M. Sc., studied industrial engineering with a major in mechanical engineering at TU Darmstadt and the Karlsruhe Institute of Technology (KIT). Since 2020, he has been working as a research associate at the wbk Institute of Production Science at KIT in the Production Systems department and investigating global production strategies.

Kevin Gleich

Kevin Gleich, M. Sc., studied industrial engineering at the Karlsruhe Institute of Technology (KIT). He is a research associate at the wbk Institute of Production Science of KIT in the department of Production Systems with a focus on manufacturing network configuration.

Prof. Dr.-Ing. Gisela Lanza

Prof. Dr.-Ing. Gisela Lanza studied industrial engineering at the Karlsruhe Institute of Technology (KIT) and held the first shared professorship “Global Production Engineering and Quality” at KIT in cooperation with Daimler AG. Since 2003, she has been head of the Production Systems Department at the wbk Institute of Production Science of KIT.

Acknowledgements

We extend our sincere gratitude to the Deutsche Forschungsgesellschaft (DFG, German Research Foundation) for supporting this research project “Level of Decentralisation of Global Production Networks – Strategy-oriented Design of Decision-making Autonomy” (513193218).

Literature

1 Lanza, G.; Ferdows, K.; Kara, S.; Mourtzis, D.; Schuh, G.; Váncza, J.; Wang, L; Wiendahl, H.-P.: Global Production Networks: Design and Operation. CIRP Annals 68 (2019) 2, pp. 823-841 DOI:10.1016/j.cirp.2019.05.00810.1016/j.cirp.2019.05.008Search in Google Scholar

2 Lanza, G.; Schuh, G.; Friedli, T.; Verhaelen, B.; Rodemann, N.; Remling, D.: Transformation globaler Produktionsnetzwerke. ZWF 115 (2020) 4, pp. 196–199 DOI:10.3139/104.11226210.3139/104.112262Search in Google Scholar

3 Steier, G. L.; Silbernagel, R.; Maier, T.; Peukert, S.; Lanza, G.: The Role of Intangible Influencing Factors in Strategic Network Decision-Making [in press]. In: Proceedings of the 29th International EurOMA Conference “Brilliance in Resilience: Operations and Supply Chain Management’s Role in Achieving a Sustainable Future” (2022), Berlin, Deutschland, 01.07.2022 – 06.07.2022Search in Google Scholar

4 Steier, G. L; Lanza, G.; Benfer, M.; Werz, P.; Ziora, M.: Decision Support Models for Strategic Production Network Configuration – A systematic literature analysis. Procedia CIRP 107 (2022), pp. 1433–1438 DOI:10.1016/j.procir.2022.05.17010.1016/j.procir.2022.05.170Search in Google Scholar

5 Shi, Y.; Gregory, M.: International Manufacturing Networks – To Develop Global Competitive Capabilities. Journal of Operations Management 16 (1998) 2–3, pp. 195–214 DOI:10.1016/S0272-6963(97)00038-710.1016/S0272-6963(97)00038-7Search in Google Scholar

6 Miltenburg, J.: Setting Manufacturing Strategy for a Company’s International Manufacturing Network. International Journal of Production Research 47 (2009) 22, pp. 6179–620310.1080/00207540802126629Search in Google Scholar

7 Ferdows, K.; Meyer, A. de: Lasting Improvements in Manufacturing Performance: In Search of a New Theory. Journal of Operations Management 9 (1990) 2, pp. 168–184 DOI:10.1016/0272-6963(90)90094-T10.1016/0272-6963(90)90094-TSearch in Google Scholar

8 Friedli, T.; Mundt, A.; Thomas, S.: Strategic Management of Global Manufacturing Networks: Management for Professionals. Springer Verlag, Berlin, Heidelberg 2014 DOI:10.1007/978-3-642-34185-410.1007/978-3-642-34185-4Search in Google Scholar

9 Steier, G.; Heusch, A.; Voigt, J.; Benfer, M.; Lanza, G.: Entscheidungsfaktoren der Produktionsnetzwerkkonfiguration / Decision Factors in Production Network Configuration. wt Werkstattstechnik online 113 (2023) 10, pp. 457–462 DOI:10.37544/1436-4980-2023-10-7910.37544/1436-4980-2023-10-79Search in Google Scholar

10 Steier, G. L.; Gleich, K.; Peukert, S.; Lanza, G.: A Fuzzy Inference System-based Approach for Assessing Strategic Capabilities in Global Production Networks. Hannover publish-Ing, 2023Search in Google Scholar

Published Online: 2024-02-10
Published in Print: 2024-02-29

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zwf-2024-1002/html
Scroll to top button